如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE与AB、AG与CD的交点. (1)试说明四边形AECG是平行四边形; (2

如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE与AB、AG与CD的交点. (1)试说明四边形AECG是平行四边形; (2

题目
如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE与AB、AG与CD的交点.

(1)试说明四边形AECG是平行四边形;
(2)若矩形的一边AB的长为3cm,当BC的长为多少时,四边形AECG是菱形?
答案
(1)由题意,得∠GAH=
1
2
∠DAC,∠ECF=
1
2
∠BCA,
∵四边形ABCD为矩形,
∴AD∥BC,
∴∠DAC=∠BCA,
∴∠GAH=∠ECF,
∴AG∥CE,
又∵AE∥CG
∴四边形AECG是平行四边形;
(2)∵四边形AECG是菱形,
∴F、H重合,
∴AC=2BC,在Rt△ABC中,设BC=x,则AC=2x,
在Rt△ABC中AC2=AB2+BC2
即(2x)2=32+x2
解得x=
3
(x=−
3
舍去)

即线段BC的长为
3
cm.
(1)因为对折,所以∠GAH=
1
2
∠DAC,∠ECF=
1
2
∠BCA,又∠GAH=∠ECF,可得AG∥CE,即可得出四边形AECG是平行四边形;
(2)由菱形的定义知可知F,H两点重合,可得出AC=2BC,由此可计算边BC的长.

矩形的性质;勾股定理;平行四边形的性质;菱形的性质;翻折变换(折叠问题).

本题是一道比较综合的题,难度适中,包含的知识点较多,关键灵活运用矩形的性质.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.