若|x|=4,|y|=3,则x+y的值是(  )A.±7B.±1C.±7或±1D.7或1

若|x|=4,|y|=3,则x+y的值是(  )A.±7B.±1C.±7或±1D.7或1

题型:单选题难度:一般来源:不详
若|x|=4,|y|=3,则x+y的值是(  )
A.±7B.±1C.±7或±1D.7或1
答案
∵|x|=4,|y|=3,
∴x=±4,y=±3,
当x=4,y=3,则x+y=7;
当x=-4,y=3,则x+y=-1;
当x=4,y=-3,则x+y=1;
当x=4-,y=-3,则x+y=-7.
故选C.
举一反三
已知|x-2|+(y+3)2=0,则(x+y)2008=______.
题型:填空题难度:一般| 查看答案
阅读下列材料并解决有关问题:我们知道:|x|=





-x(当x<0时)
0(当x=0时)
x(当x>0时)
,现在我们可以用这一结论来解含有绝对值的方程.例如,解方程|x+1|+|2x-3|=8时,可令x+1=0和2x-3=0,分别求得x=-1和
3
2
,(称-1和
3
2
分别为|x+1|和|2x-3|的零点值),在实数范围内,零点值x=-1和可将全体实数分成不重复且不遗漏的如下3种情况:①x<-1②-1≤x<
3
2
x≥
3
2
,从而解方程|x+1|+|2x-3|=8可分以下三种情况:
①当x<-1时,原方程可化为-(x+1)-(2x-3)=8,解得x=-2.
②当-1≤x<
3
2
时,原方程可化为(x+1)-(2x-3)=8,解得x=-4,但不符合-1≤x<
3
2
,故舍去.
③当x≥
3
2
时,原方程可化为(x+1)+(2x-3)=8,解得x=
10
3

综上所述,方程|x+1|+|2x-3|=8的解为,x=-2和x=
10
3

通过以上阅读,请你解决以下问题:
(1)分别求出|x+2|和|3x-1|的零点值.
(2)解方程|x+2|+|3x-1|=9.
题型:解答题难度:一般| 查看答案
已知|a+1|+(2b-6)2=0,则a+b=______.
题型:填空题难度:一般| 查看答案
已知|x-y|=y-x,|x|=3,|y|=4,则(x+y)3=______.
题型:填空题难度:一般| 查看答案
若x、y互为相反数,则3-2006x-2006y=______;若a、b互为倒数,则-
2007
ab
=______;若|2-a|+(b-4)4=0,那么2ab=______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.