(1)计算:(a+b)(a2-ab+b2);(2)若x+y=1,xy=-1,求x3+y3的值.
题型:解答题难度:一般来源:肇庆
(1)计算:(a+b)(a2-ab+b2); (2)若x+y=1,xy=-1,求x3+y3的值. |
答案
(1)(a+b)(a2-ab+b2), =a3-a2b+ab2+a2b-ab2+b3, =a3+b3;
(2)x3+y3=(x+y)(x2-xy+y2), =(x+y)[(x+y)2-3xy], ∵x+y=1,xy=-1, ∴x3+y3=1×[12-3×(-1)]=4. |
举一反三
下列等式成立的是( )A.x2+y2=(x+y)(x+y) | B.x2-y2=(x+y)(x-y) | C.-x2+y2=(-x+y)(-x-y) | D.-x2-y2=-(x+y)(x-y) |
|
已知a+b=8,且a2-b2=48,则式子a-3b的值是______ |
下列各式中,能用平方差公式计算的是( )A.(3xy+a)(-3xy+a) | B.(-4x-5y)(4x+5y) | C.(2a-3b)(3b-2a) | D.(-a-b)(-b-a) |
|
如果a+b=2012,a-b=1,那么a2-b2=______. |
最新试题
热门考点