(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1-1-1,|A

(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1-1-1,|A

题型:不详难度:来源:
(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1-1-1,|AB|="|OB|=|b|=|a-b|" 当A、B两点都不在原点时,
①如图1-1-2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
②如图1-1-3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
③如图1-1-4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;
综上,数轴上A、B两点之间的距离|AB|=|a-b|.

(2)回答下列问题:
①数轴上表示2和5的两点之间的距离是   ▲ ,数轴上表示-2和-5的两点之间的距离是   ▲ 
数轴上表示1和-3的两点之间的距离是   ▲ 
②数轴上表示x和-1的两点A和B之间的距离是   ▲ ,如果|AB|=3,那么x   ▲ 
③当代数式|x+2|十|x-5|取最小值时,相应的x的取值范围是   ▲ 
④解方程∣x+2∣+∣x-5∣=9
答案
①3   3   4                    3分
②∣AB∣=∣x+1∣,   2或-4       2分
                     3分
                   2分
解析
①②直接根据数轴上A、B两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离.
③④根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围
举一反三
已知关于x的方程4(x+2)-5=3a+2的解不大于,求字母a的取值范围
题型:不详难度:| 查看答案
解不等式,并在数轴上表示它的解集.
题型:不详难度:| 查看答案
解不等式组   并把它的解集表示在数轴上.
题型:不详难度:| 查看答案
不等式的解集是                .
题型:不详难度:| 查看答案
不等式的解集是 (     )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.