写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式) .
题型:不详难度:来源:
写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式) . |
答案
y=2x |
解析
试题分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可. 解:∵正比例函数y=kx的图象经过一,三象限, ∴k>0, 取k=2可得函数关系式y=2x. 故答案为:y=2x. |
举一反三
如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD. (1)填空:点C的坐标是( , ),点D的坐标是( , ); (2)设直线CD与AB交于点M,求线段BM的长; (3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由. |
如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0). (1)直线经过点C,且与x轴交于点E,求四边形AECD的面积; (2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式; (3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积. |
在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题: (1)求出蜡烛燃烧时y与x之间的函数关系式; (2)求蜡烛从点燃到燃尽所用的时间.
|
一次函数中,y的值随着x值的增大而减小的是( )A.y=x-4 | B.y=-2+0.1x | C.y=8x-3 | D.y=(-)x |
|
直线y=-x+4和x轴、y轴分别相交于点A、B,在平面直角坐标系内,A、B两点到直线a的距离均为2,则满足条件的直线a的条数为( ) |
最新试题
热门考点