已知,如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表

已知,如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表

题型:不详难度:来源:
已知,如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).
(1)求直线l1,l2的表达式;
(2)点C为线段OB上一动点 (点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.
①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);
②若矩形CDEF的面积为60,请直接写出此时点C的坐标.
答案
(1)l1的表达式为y=x,l2的表达式为=-x+24,(2)①D(3a, -3a+24)②C(3, 1) 或C(15, 5)
解析
解:(1)设直线l1的表达式为y=k1x,∵直线l1过B(18, 6),∴18k1=6 ,即k1=
∴直线l1的表达式为y=x。
设直线l2的表达式为y=k2x+b,∵直线l2过A (0, 24), B(18, 6),
 解得 
y∴直线l2的表达式为=-x+24。

(2) ①∵点C在直线l1上, 且点C的纵坐标为a,
∴a=x,得x=3a。 ∴点C的坐标为 (3a, a)。
∵CD∥y轴,∴点D的横坐标为3a。
∵点D在直线l2上 ,∴y=-3a+24。∴D(3a, -3a+24)。
②C(3, 1) 或C(15, 5)。
(1)设直线l1的表达式为y=k1x,它过(18,6)可求出k1的值,从而得出其解析式;设直线l2的表达式为y=k2+b,由于它过点A(0,24),B(18,6),故把此两点坐标代入即可求出k2,b的值,从而得出其解析式。
(2)①因为点C在直线l1上,且点C的纵坐标为a,故把y=a代入直线l1的表达式即可得出x的值,从而得出C点坐标;由于CD∥y轴,所以点D的横坐标为3a,再根据点D在直线l2上即可得出点D的纵坐标,从而得出结论。
②先根据C、D两点的坐标用a表示出CF及CD的值,由矩形的面积为60即可求出a的值,得出C点坐标:
∵C(3a,a),D(3a,-3a+24),∴CF=3a,CD=-3a+24-a=-4a+24。
∵矩形CDEF的面积为60,∴S矩形CDEF=CF•CD=3a×(-4a+24)=60,解得a=1或a=5
当a=1是,3a=3,故C(3,1);当a=5时,3a=15,故C(15,5)。
综上所述C点坐标为:C(3,1)或C(15,5)。
举一反三
一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶的时间x(小时)的函数关系的图象是如图所示的直线l的一部分.

(1)求直线l的函数表达式;
(2)如果警车要回到A处,且要求警车的余油量不能少于10升,那么警车可以以行驶到离A处的最远距离是多少?
题型:不详难度:| 查看答案
某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是会员卡租书,办卡费每月12元,租书费每册0.4元.小军经常来该店租书,若每月租书数量为x册.
(1)写出零星租书方式应付金额y1(元)与租书数量x(册)之间的函数关系式;
(2)写出会员卡租书方式应付金额y2(元 )与租书数量x(册)之间的函数关系式;
(3)小军选取哪种租书方式更合算?
题型:不详难度:| 查看答案
某文具店出售书包与文具盒,书包每个定价50元,文具盒每个定价10元.该店制定了两种优惠方案:①买一个书包赠送一个文具盒;②按总价的8.5折(总价的85%)付款.某班学生需购买l2个书包、文具盒若干(不少于12个)。如果设文具盒数个,付款数为元。根据条件解决下列问题:
(1)分别求出两种优惠方案中之间的关系;
(2)试分析哪一种方案更省钱.
题型:不详难度:| 查看答案
黄冈市英山县有一个茶叶厂,该厂的茶叶主要有两种销售方式,一种方式是卖给茶叶经销商,另一种方式是在各超市的柜台进行销售,每年该厂生产的茶叶都可以全部销售,该茶叶厂每年可以生产茶叶100万盒,其中,卖给茶叶经销商每盒茶叶的利润y1(元)与销售量x(万盒)之间的函数图如图所示;在各超市柜台销售的每盒利润y2(元)与销售量x(万盒)之间的函数关系为:

(1)写出该茶叶厂卖给茶叶经销商的销售总利润(万元)与其销售量x(万盒)之间的函数关系式,并指出x的取值范围;
(2)求出该茶叶厂在各超市柜台销售的总利润(万元)与卖给茶叶经销商的销售量x(万盒)之间的函数关系式,并指出x的取值范围;
(3)求该茶叶厂每年的总利润w(万元)与卖给茶叶经销商的销售量x(万盒)之间的函数关系式,并帮助该茶叶厂确定卖给茶叶经销商和在各超市柜台的销量各为多少万盒时,该公司的年利润最大?
题型:不详难度:| 查看答案
小明和小亮进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡底跑到坡顶再原路返回坡底.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小明在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).

(1)求小明上、下坡的速度及A点的坐标;
(2)小亮上坡平均速度是小明上坡平均速度的一半,那么两人出发后多长时间第一次相遇?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.