从A地向B地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,若通话时间为t分钟(t≥3且t是整数),则付话费y元与t分钟函数关系式是_________
题型:不详难度:来源:
从A地向B地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,若通话时间为t分钟(t≥3且t是整数),则付话费y元与t分钟函数关系式是__________________. |
答案
y=t-0.6 |
解析
本题采取分段收费,不超3分钟,收费2.4元,超过3分钟,收费为(t-3)元,由此建立付话费y元与时间t的函数关系式. 解:依题意得,y=2.4+1×(t-3), 整理得:y=t-0.6. |
举一反三
正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3和点C1,C2,C3,…分别在直线(k>0)和x轴上,已知点B1(1,1),B2(3,2), 则Bn的坐标是______________. |
已知函数y=(2m–2)x+m+1 (1)m为何值时,图象过原点. (2)已知y随x增大而增大,函数图象与y轴交点在x轴上方,求m取值范围. |
已知某一次函数自变量x的取值范围是0≤x≤10,函数y的取值范围,10≤y≤30 , 求此函数解析式. |
如图,在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y. ⑴ 写出y与x之间的函数关系式及x的取值范围; ⑵ 说明是否存在点P,使四边形APCD的面积为1.5? |
大学生李萌同学利用暑假参加社会实践,为某报社推销报纸,订购价格是每份0.7元,销售价是每份1元,卖不掉的报纸由报社发行部以每份0.2元回收,在一个月内(以31天计算)约有20天每天可卖出100份,其余11天每天可卖出60份,但报社发行部要求每天订购的报纸份数必须相同,若每天订购x份为自变量,该月所获得的利润y(元)为x的函数. (1)写出y与x的函数关系式,并指出x自变量的取值范围。 (2)李萌同学应该每天订购多少份该报纸,才能使该月获得的利润最大?并求出这个最大值。 |
最新试题
热门考点