如图,在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y.⑴ 写出y与x之间的函数关系式及x的取值范围;⑵ 说

如图,在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y.⑴ 写出y与x之间的函数关系式及x的取值范围;⑵ 说

题型:不详难度:来源:
如图,在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y.
⑴ 写出y与x之间的函数关系式及x的取值范围;
⑵ 说明是否存在点P,使四边形APCD的面积为1.5?  
答案
解:(1)y=4-x(0≤x≤2)
(2)当y=4-x=1.5时,x=2.5不在0≤x≤2的范围内,
因此不存在点P使四边形APCD的面积为1.5.
解析
(1)四边形APCD的面积=正方形的面积-三角形ABP的面积,有了正方形的边长和BP的长,就能表示出正方形和三角形ABP的面积,进而可得出y与x的函数关系式.由于P从B运动到C,所以自变量的取值范围应该在0-2之间.
(2)可根据(1)得出的函数关系式,将面积代入式子中,求出x的值,看是否符合(1)中自变量的取值范围.
举一反三
大学生李萌同学利用暑假参加社会实践,为某报社推销报纸,订购价格是每份0.7元,销售价是每份1元,卖不掉的报纸由报社发行部以每份0.2元回收,在一个月内(以31天计算)约有20天每天可卖出100份,其余11天每天可卖出60份,但报社发行部要求每天订购的报纸份数必须相同,若每天订购x份为自变量,该月所获得的利润y(元)为x的函数.
(1)写出y与x的函数关系式,并指出x自变量的取值范围。
(2)李萌同学应该每天订购多少份该报纸,才能使该月获得的利润最大?并求出这个最大值。
题型:不详难度:| 查看答案
今年春季,我省云南、贵州等西南地区遇到多年不遇旱灾,“一方有难,八方支援”,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩。现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩。
(1)设甲种柴油发电机的数量为x台,乙种柴油发电机数量y台。
①用含x、y的式子表示丙种柴油发电机的数量;
②求出y与x的函数解析式;
(2)已知甲、乙、丙柴油发电机每小时费用分别为130元、120元 、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用w最少? 
题型:不详难度:| 查看答案
某工厂生产A、B两种产品共50件,其生产成本与利润如下表:
 
       A种产品
        B种产品
   成本 (万元/件)
          0.6
           0.9
   利润 (万元/件)
          0.2
           0.4
 
若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?
题型:不详难度:| 查看答案
如图,在平面直角坐标系xoy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相较于点N.
求M,N的坐标;
在矩形ABCD中,已知AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个
单位长度的速度移动.设矩形ABCD与△OMN的重叠部分的面积为S.移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束)。直接写出S与自变量t之间的函数关系式(不需要给出解答过程);
在(2)的条件下,当t为何值时,S的值最大?并求出最大值.

 
题型:不详难度:| 查看答案
若直线y=-2x-4与直线y=4x+b的交点在第三象限,则b的取值范围是【   】.
A.-4<b<8B.-4<b<0C.b<-4或b>8D.-4≤6≤8

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.