如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-12x+b交折线OA

如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-12x+b交折线OA

题型:不详难度:来源:
如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
1
2
x
+b交折线OAB于点E.记△ODE的面积为S,求S与b的函数关系式.
答案
(1)由题意得B(3,1).
若直线经过点A(3,0)时,则b=
3
2

若直线经过点B(3,1)时,则b=
5
2

若直线经过点C(0,1)时,则b=1;

①若直线与折线OAB的交点在OA上时,即1<b≤
3
2
,如图①,
此时E(2b,0)
∴S=
1
2
OE•CO=
1
2
×2b×1=b
②若直线与折线OAB的交点在BA上时,即
3
2
<b<
5
2
,如图②

此时E(3,b-
3
2
),D(2b-2,1)
∴S=S-(S△OCD+S△OAE+S△DBE
=3-[
1
2
(2b-2)×1+
1
2
×(5-2b)•(
5
2
-b
)+
1
2
×3(b-
3
2
)]=
5
2
b-b2

∴S=





b(1<b≤
3
2
)
5
2
b-b2(
3
2
<b<
5
2
)
举一反三
A、B两地相距300千米,甲、乙两辆火车分别从A、B两地同时出发,相向而行,如图,l1,l2分别表示两辆火车离A地的距离s(千米)与行驶时间t(时)的关系.
(1)l1表示哪辆火车离A地的距离与行驶时间的关系?
(2)1小时后,两车相距多少千米?
(3)求出l1,l2分别表示的两辆火车的s与t的函数关系式.
(4)行驶多长时间后,甲、乙两车相遇?
题型:不详难度:| 查看答案
如图,在直角梯形OABC中,ABOC,过点O、点B的直线解析式为y=
4
3
x,OA、AB是方程x2-14x+48=0的两个根,OB=BC,D、E分别是线段OC、OB上的动点(点D与点O、点C不重合),且∠BDE=∠ABO,设CD=x,BE=y.
(1)求BC和OC的长;
(2)求y与x的函数关系式;
(3)是否存在x的值,使以点B、点D、点E为顶点的三角形为等腰三角形?若存在,请直接写出x的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

销售方式批发零售储藏后销售
售价(元/吨)300045005500
成本(元/吨)70010001200
已知一次函数的图象经过A(1,-1)和B(2,2).
(1)求出这个函数的关系式并画出图象;
(2)已知直线AB上一点C到y轴的距离为3,求点C的坐标.
如图,将△ABC放在平面直角坐标系中,使B、C在X轴正半轴上,若AB=AC.且A点坐标为(3,2),B点坐标为(1,0).
(1)求边AC所在直线的解析式;
(2)若坐标平面内存在三角形与△ABC全等且有一条公共边,请写出这些三角形未知顶点的坐标.