如图,在直角梯形OABC中,AB∥OC,过点O、点B的直线解析式为y=43x,OA、AB是方程x2-14x+48=0的两个根,OB=BC,D、E分别是线段OC、

如图,在直角梯形OABC中,AB∥OC,过点O、点B的直线解析式为y=43x,OA、AB是方程x2-14x+48=0的两个根,OB=BC,D、E分别是线段OC、

题型:不详难度:来源:
如图,在直角梯形OABC中,ABOC,过点O、点B的直线解析式为y=
4
3
x,OA、AB是方程x2-14x+48=0的两个根,OB=BC,D、E分别是线段OC、OB上的动点(点D与点O、点C不重合),且∠BDE=∠ABO,设CD=x,BE=y.
(1)求BC和OC的长;
(2)求y与x的函数关系式;
(3)是否存在x的值,使以点B、点D、点E为顶点的三角形为等腰三角形?若存在,请直接写出x的值;若不存在,请说明理由.
答案
(1)解方程x2-14x+48=0,
得x1=6,x2=8.
过点B作BM⊥OC于点M,
又∵过点O、点B的直线解析式为y=
4
3
x

∴BM:OM=4:3,
∴BM=8,OM=6,
∴BC=OB=


62+82
=10
,OC=2OM=12;

(2)∵ABOC,∴∠ABO=∠BOC,
∵BO=BC,∴∠BOC=∠BCO,
∵∠BDE=∠ABO,∴∠BDE=∠BCO,
∵∠ODB=∠ODE+∠BDE=∠CBD+∠BCO,∴∠ODE=∠CBD,
∴△ODE△CBD,∴OD:CB=OE:CD,
∴(12-x):10=(10-y):x,
解得y=
1
10
x2-
6
5
x+10(0<x<12);

(3)存在x1=2,x2=
11
3
,使以点B、点D、点E为顶点的三角形为等腰三角形.理由如下:
∵∠BED>∠BOC=∠BDE,∴BD>BE,
当△BDE为等腰三角形时,分两种情况:
①当DE=DB时,
∵△ODE△CBD,
∴OD:CB=DE:BD=1,
∴(12-x):10=1,
解得x=2;
②当EB=ED时,
∵△ODE△CBD,
∴OD:CB=OE:CD=DE:BD,
∴(12-x):10=(10-y):x=y:(12-x),
解得x=
11
3

故存在x1=2,x2=
11
3
,使以点B、点D、点E为顶点的三角形为等腰三角形.
举一反三
某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

销售方式批发零售储藏后销售
售价(元/吨)300045005500
成本(元/吨)70010001200
已知一次函数的图象经过A(1,-1)和B(2,2).
(1)求出这个函数的关系式并画出图象;
(2)已知直线AB上一点C到y轴的距离为3,求点C的坐标.
如图,将△ABC放在平面直角坐标系中,使B、C在X轴正半轴上,若AB=AC.且A点坐标为(3,2),B点坐标为(1,0).
(1)求边AC所在直线的解析式;
(2)若坐标平面内存在三角形与△ABC全等且有一条公共边,请写出这些三角形未知顶点的坐标.
已知,如图点A(1,1),B(2,-3),点P为x轴上一点,当|PA-PB|最大时,点P的坐标为(  )
A.(
1
2
,0)
B.(
5
4
,0)
C.(-
1
2
,0)
D.(1,0)

如图,在平面直角坐标系中,直线y=-
3
4
x+6交x轴于点A,交y轴于点B.点P,点Q同时从原点出发作匀速运动,点P沿x轴正方向运动,点Q沿OB→BA方向运动,并同时到达点A.点P运动的速度为1厘米/秒.
(1)求点Q运动的速度;
(2)当点Q运动到线段BA上时,设点P运动的时间为x(秒),△POQ的面积为y(平方厘米),那么用x的代数式表示AQ=______,并求y与x的函数关系式;
(3)若将(2)中所得函数的自变量x的取值范围扩大到任意实数后,其函数图象上是否存在点M,使得点M与该函数图象和x轴的两个交点所组成的三角形面积等于△AOB的面积?若存在,求出点M的坐标;若不存在,请说明理由.