已知直线l与直线y=2x+1的交点的横坐标为2,与直线y=-x+8的交点的纵坐标为-7,求直线的表达式。

已知直线l与直线y=2x+1的交点的横坐标为2,与直线y=-x+8的交点的纵坐标为-7,求直线的表达式。

题型:专项题难度:来源:
已知直线l与直线y=2x+1的交点的横坐标为2,与直线y=-x+8的交点的纵坐标为-7,求直线的表达式。
答案
解:在y=2x+1中,当x=2时,y=5,∴直线l与直线y=2x+1的交点坐标为(2,5),
       在y=-x-8中,当y=-7时,x=-1,∴直线l与直线y=-x-8交点坐标为(-1,-7)。
      设过点(2,5),(-1,-7)的直线l解析式为y=kx+b。
      ∴2k+b=5 ①,-k+b=-7 ②,
        解得:k=4,b=-3。即直线l的表达式为y=4x-3。
举一反三
已知y=kx+b,当x=1时,y=-1,当x=3时,y=-5,则k=(     ),b=(     )。
题型:专项题难度:| 查看答案
一家小型放影厅盈利额y(元)同售票数x之间的关系如图所示,其中保险部门规定:超过150人时,要缴纳公安消防保险费50元,试根据关系图回答下列问题:
(1)当售票数x满足0<x≤150时,盈利额y(元)与x之间的函数关系式是(     );
(2)当售票数x满足150<x≤250时,盈利额y(元)与x之间的函数关系式是(     );
(3)当售票数x为(     )时,不赔不赚;当售票数x满足(     )时,放影厅要赔本;若放影厅要获得最大利润200元,此时售票数x应为(     );
(4)当x满足(     )时,此时利润比x=150时多。
题型:专项题难度:| 查看答案
某移动通讯公司开设两种业务。“全球通”:先缴50元月租费,然后每通话1分钟,再付0.4元,“神州行”:不缴纳月租费,每通话1分钟,付话费0.6元(通话均指市话)。若设一个月内通话x分钟,两种方式费用分别为y1和y2元,(通话时不足1分钟的按1分钟计算,如3分20秒按4分钟收费)
(1)写出y1、y2与x之间的函数关系式;
(2)在同一坐标系下做出以上两个函数的图象;
(3)一个月内通话多少分钟,两种费用相同;
(4)某人一个月内通话300分钟,应选择哪种合算?
题型:专项题难度:| 查看答案
某地长途客运公司规定,旅客可随身携带一定质量的行李,如果超过规定,则需购买行李票,行李票费用y(元)是行李质量x(千克)的一次函数,其图象如图所示。
(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;
(2)旅客最多可免费携带多少千克行李?
题型:专项题难度:| 查看答案
已知一次函数图象经过A(-2,-3)、B(1,3)两点。
(1)求这个一次函数的解析式;
(2)试判断点P(-1,1)是否在这个一次函数的图象上?
题型:专项题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.