一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这个函数的解析式。

一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这个函数的解析式。

题型:期末题难度:来源:
一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这个函数的解析式。
答案
解:①当k>0时,y随x的增大而增大,则有:
当x=-3,y=-5;当x=6时,y=-2,把它们代入y=kx+b中可得
  ∴  ∴函数解析式为y=x-4
②当k<0时则随x的增大而减小,则有:
当x=-3时,y=-2;当x=6时,y=-5,把它们代入y=kx+b中可得
  ∴   ∴函数解析式为y=-x-3
∴函数解析式为y=x-4,或y=-x-3。
举一反三
有一个附有进水管、出水管的水池,每单位时间内进出水管的进、出水量都是一定的,设从某时刻开始,4h内只进水不出水,在随后的时间内不进水只出水,得到的时间x(h)与水量y(m3)之间的关系图(如图),回答下列问题:
(1)进水管4h共进水多少?每小时进水多少?
(2)当0≤x≤4时,y与x有何关系?
(3)当x=9时,水池中的水量是多少?
(4)若4h后,只放水不进水,那么多少小时可将水池中的水放完?
题型:期末题难度:| 查看答案
若函数y=4x+3-k的图象经过原点,那么k=(    )。
题型:贵州省期末题难度:| 查看答案
一次函数y=k1x-4与正比例函数y=k2x的图象经过点(2,-1),
(1)分别求出这两个函数的表达式;
(2)求这两个函数的图象与x轴围成的三角形的面积。
题型:贵州省期末题难度:| 查看答案
如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为 (-8,0),点A的坐标为(0,6)。
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)探究:当P运动到什么位置时,△OPA的面积为,并说明理由。

题型:贵州省期末题难度:| 查看答案
如图,有一种动画程序,屏幕上正方形是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=-2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为(     )。
题型:江苏期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.