如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线

如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线

题型:不详难度:来源:
如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.

(1)若E是AB的中点,求F点的坐标;
(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,请证明△EGD∽△DCF,并求出k的值.
答案
(1)点F的坐标为(4,1);(2)证明见解析,k=3.
解析

试题分析:(1)根据点E是AB中点,可求出点E的坐标,将点E的坐标代入反比例函数解析式可求出k的值,再由点F的横坐标为4,可求出点F的纵坐标,继而得出答案;
(2)证明∠GED=∠CDF,然后利用两角法可判断△EGD∽△DCF,设点E坐标为(,2),点F坐标为(4,),即可得CF=,BF=DF=2﹣,在Rt△CDF中表示出CD,利用对应边成比例可求出k的值.
试题解析:(1)∵点E是AB的中点,OA=2,AB=4,
∴点E的坐标为(2,2),
将点E的坐标代入y=,可得k=4,
即反比例函数解析式为:y=
∵点F的横坐标为4,
∴点F的纵坐标==1,
故点F的坐标为(4,1);
(2)由折叠的性质可得:BE=DE,BF=DF,∠B=∠EDF=90°,
∵∠CDF+∠EDG=90°,∠GED+∠EDG=90°,
∴∠CDF=∠GED,
又∵∠EGD=∠DCF=90°,
∴△EGD∽△DCF,
结合图形可设点E坐标为(,2),点F坐标为(4,),
则CF=,BF=DF=2﹣,ED=BE=AB﹣AE=4﹣
在Rt△CDF中,CD=
,即
=1,
解得:k=3.
举一反三
如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为________(用含n的代数式表示).

题型:不详难度:| 查看答案
点(-1,y1),(2,y2),(3,y3)均在函数y=的图象上,则y1,y2,y3的大小关系是(  )
A.y3<y2<y1B.y2<y3<y1
C.y1<y2<y3D.y1<y3<y2

题型:不详难度:| 查看答案
试写出图象位于第二、四象限的一个反比例函数的解析式y=    W.
题型:不详难度:| 查看答案
如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为    W.

题型:不详难度:| 查看答案
已知反比例函数,当时,的增大而增大,则关于的方程的根的情况是(   )
A.有两个正根B.有两个负根
C.有一个正根一个负根D.没有实数根

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.