如图,直线y=3x+3与x轴交于A点,与y轴交于B点,以AB为直角边作等腰Rt△ABC,∠BAC=90°,AC=AB,双曲线y=kx经过C点①求双曲线的解析式;

如图,直线y=3x+3与x轴交于A点,与y轴交于B点,以AB为直角边作等腰Rt△ABC,∠BAC=90°,AC=AB,双曲线y=kx经过C点①求双曲线的解析式;

题型:不详难度:来源:
如图,直线y=3x+3与x轴交于A点,与y轴交于B点,以AB为直角边作等腰Rt△ABC,∠BAC=90°,AC=AB,双曲线y=
k
x
经过C点
①求双曲线的解析式;
②点P为第四象限双曲线上一点,连接BP,点Q(x、y)为线段AB上一动点,过Q作QD⊥BP,若QD=n,问是否存在一点P使y+n=3?若存在,求直线BP解析式;若不存在,说明理由.
答案
①过点C作CD⊥x轴于点D.
由y=3x+3得,A(-1,0),B(0,3),
∴OA=1,OB=3.
∵∠CAD+∠BAO=90°,∠ABO+∠BAO=90°,
∴∠CAD=∠AOB.
∵AC=AB,∠CAD=∠AOB=90°,
∴△ADC≌△BOA,
∴CD=OA=1,AD=OB=3,
∴OD=OA+AD=4,
∴C(-4,1),
∴k=xy=(-4)×1=-4,
∴该双曲线的解析式是y=-
4
x


②过点Q作QM⊥x轴于点M,QN⊥y轴于点N.
∵∠MON=90°,
∴四边形OMQN是矩形,
∴QM=ON.
∵y+n=3,OM=3,
∴ON+QD=OB,
∵ON+BN=OB,
∴QD=BN.
∵∠QNB=∠BDQ=90°,BQ=QB,
∴△BQN≌△QBD,
∴∠BQN=∠QBD,
∵QNOA,
∴∠BQN=∠BAO,
∴∠BAO=∠QBD,
∴AE=DE.
设OE=x.则BE=AE=x+1.
在直角△BOE中,由勾股定理,得
32+x2=(x+1)2
解得,x=4,
∴E(4,0).
设直线BP的解析式是:y=kx+b(k≠0)





b=3
4k+b=0

解得





k=-
3
4
b=3

∴y=-
3
4
x+3.
举一反三
如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=
2
x
于点D,过D作两坐标轴的垂线DC、DE,连接OD.
(1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证:AD•BD为定值;
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知双曲线y=
k
x
经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.
题型:不详难度:| 查看答案
如图,点D在反比例函数y=
k
x
(k>0)上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰直角三角形.

(1)求点D的坐标;
(2)求反比例函数的解析式;
(3)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,垂足分别为点A和点E,连结OB,将四边形OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F.求直线BA′的解析式.
题型:不详难度:| 查看答案
某校科技小组进行野外考察,途中遇到一片的烂泥湿地.为了人员和设备安全迅速地通过这片湿地,他们沿着前进路线铺了若干块大小不同的木板,构筑成一条临时通道.已知当压力不变时,木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.
〔1〕请直接写出p与S之间的关系式和自变量S的取值范围;
(2)当木板面积为0.2m2时,压强是多少?
题型:不详难度:| 查看答案
水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

第1天第2天第3天第4天第5天第6天第7天第8天
售价
x(元/千克)
400250240200150125120
销售量
y(千克)
304048608096100