跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲.乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距

跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲.乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距

题型:不详难度:来源:
跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲.乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式 .

(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,小华的身高为               ;
(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米, 绳子甩到最高处时超过她的头顶,请结合图像,写出t的取值范围                  
答案
(1)抛物线的解析式是y=﹣0.1x2+0.6x+0.9;(2)小华的身高是1.8米;(3)1<t<5.
解析

试题分析:(1)已知抛物线解析式,求其中的待定系数,选定抛物线上两点E(1,1.4),B(6,0.9)坐标代入即可;
(2)小华站在OD之间,且离点O的距离为3米,即OF=3,求当x=3时,函数值;
(3)实质上就是求y=1.4时,对应的x的两个值,就是t的取值范围.
试题解析:(1)由题意得点E(1,1.4),B(6,0.9),代入y=ax2+bx+0.9得,
解得,
∴所求的抛物线的解析式是y=﹣0.1x2+0.6x+0.9;
(2)把x=3代入y=﹣0.1x2+0.6x+0.9得
y=﹣0.1×32+0.6×3+0.9=1.8
∴小华的身高是1.8米;
(3)当y=1.4时,﹣0.1x2+0.6x+0.9=1.4,
解得x1=1,x2=5,
∴1<t<5.
考点:二次函数的应用.
举一反三
某跳水运动员进行10m跳台跳水的训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为己知条件).在跳某个规定动作时,正确情况下,该运动员在空中的最高处距水面m,入水处与池边的距离为4m, 同时,运动员在距水面高度为5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.

(l)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为,问:此次跳水会不会失误?通过计算说明理由.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,已知点坐标为(2,4),直线x=2与轴相交于点,连结,抛物线y=x从点沿方向平移,与直线x=2交于点,顶点点时停止移动.

(1)求线段所在直线的函数解析式;
(2)设抛物线顶点的横坐标为,
①用的代数式表示点的坐标;
②当为何值时,线段最短;
(3)当线段最短时,相应的抛物线上是否存在点,使△的面积与△的面积相等,若存在,请求出点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
对于抛物线y=(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为(  )
A.1B.2C.3D.4

题型:不详难度:| 查看答案
已知二次函数=2++(≠0)的图象如图所示,在下列五个结论中:
①2-<0;②<0;③;④-+>0; ⑤4+2+>0,错误的个数有
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
抛物线的最小值是           
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.