如图,抛物线y1=-x2+3与x轴交于A、B两点,与直线y2=-x+b相交于B、C两点.(1)求直线BC的解析式和点C的坐标;(2)若对于相同的x,两个函数的函

如图,抛物线y1=-x2+3与x轴交于A、B两点,与直线y2=-x+b相交于B、C两点.(1)求直线BC的解析式和点C的坐标;(2)若对于相同的x,两个函数的函

题型:不详难度:来源:
如图,抛物线y1=-x2+3与x轴交于A、B两点,与直线y2=-x+b相交于B、C两点.

(1)求直线BC的解析式和点C的坐标;
(2)若对于相同的x,两个函数的函数值满足y1≥y2,则自变量x的取值范围是     
答案
(1)
解析

试题分析:(1)令y=0求解得到点B的坐标,把点B的坐标代入直线解析式求出b的值,再与直线联立求解得到点C的坐标;(2)根据函数图象找出抛物线在直线上方部分的x的取值范围:由图可知,y1≥y2时,
试题解析:(1)令y=0,则,解得x1=-2,x2=2,∴点B的坐标为(2,0),
,解得b=6,
∴直线BC的解析式为.
,解得(舍去),
∴点C的坐标为.
(2)
举一反三
某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,若这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)每件售价定为多少元时,才能使利润为640元?(2)每件售价定为多少元时,才能使利润最大?
题型:不详难度:| 查看答案
某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为:
(1)用x的代数式表示t为:t=      ;当0<x≤4时, y2与x的函数关系为y2      ;当      ≤x<      时,y2=100;
(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;
(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?
题型:不详难度:| 查看答案
抛物线向右平移3个单位长度得到的抛物线对应的函数关系式为
A.B.C.D.

题型:不详难度:| 查看答案
已知函数的图象如图所示,则下列结论中:①;②;③;④.正确的是              

题型:不详难度:| 查看答案
某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.(假设年租金的增加额均为5000元的整数倍)该公司要为租出的商铺每间每年交各种费用2万元,未租出的商铺每间每年交各种费用1万元.
(1)当每间商铺的年租金定为12万元时,能租出多少间?年收益多少万元?
(2)当每间商铺的年租金定为多少万元时,该公司的年收益最大,最大值为多少?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.