如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方

如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方

题型:不详难度:来源:
如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为t秒.

(1)当t=     时,点P与点Q相遇;
(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?
(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.
①求s与ι之间的函数关系式;
②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的
△APD与△PCQ重叠部分的面积.
答案
解:(1)7。
(2)点P从B到C的时间是3秒,此时点Q在AB上,则
时,点P在BC上,点Q在CA上,若△PCQ为等腰三角形,则一定为等腰直角三角形,有:PC=CQ,即3﹣t=2t,解得:t=1。
时,点P在BC上,点Q在AB上,若△PCQ为等腰三角形,则一定有PQ=PC(如图1),则点Q在PC的中垂线上。

作QH⊥AC,则QH=PC,△AQH∽△ABC,
在Rt△AQH中,AQ=2t﹣4,

∵PC=BC﹣BP=3﹣t,
,解得:
综上所述,在点P从点B到点C的运动过程中,当t=1或时,△PCQ为等腰三角形。
(3)在点Q从点B返回点A的运动过程中,P一定在AC上,
则PC=t﹣3,BQ=2t﹣9,即
同(2)可得:△PCQ中,PC边上的高是:

∴当t=5时,s有最大值,此时,P是AC的中点(如图2)。
∵沿直线PD折叠,使点A落在直线PC上,
∴PD一定是AC的中垂线。
∴AP=CP=AC=2,PD=BC=
∴AQ=14﹣2t=14﹣2×5=4。
如图2,连接DC(即AD的折叠线)交PQ于点O,过Q作QE⊥CA于点E,过O作OF⊥CA于点F,则△PCO即为折叠后的△APD与△PCQ重叠部分的面积。

则QE=AQ=×4=,EA=AQ=×4=
∴EP=,CE=
设FP=x,FO=y,则CF=
由△CFO∽△CPD得,即,∴
由△PFO∽△PEQ得,即,∴。解得:
∴△PCO即为折叠后的△APD与△PCQ重叠部分的面积
解析

试题分析:(1)首先利用勾股定理求得AC的长度,点P与点Q相遇一定是在P由B到A的过程中,利用方程即可求得:
在Rt△ABC中,∵∠C=90°,BC=3,AB=5,∴根据勾股定理得AC=4。
则Q从C到B经过的路程是9,需要的时间是4.5秒,此时P运动的路程是4.5,P和Q之间的距离是:3+4+5﹣4.5=7.5。
根据题意得:,解得:t=7。
(2)因为点P从B到C的时间是3秒,此时点Q在AB上,所以分(点P在BC上,点Q在CA上)和(点P在BC上,点Q在AB上)两种情况进行讨论求得t的值。
(3)在点Q从点B返回点A的运动过程中,P一定在AC上,则PC的长度是t﹣3,然后利用相似三角形的性质即可利用t表示出s的值,然后利用二次函数的性质即可求得s最大时t的值,此时,P是AC的中点,直线PD折叠,使点A落在直线PC上,则PD一定是AC的中垂线。因此,连接DC(即AD的折叠线)交PQ于点O,过Q作QE⊥CA于点E,过O作OF⊥CA于点F,则△PCO即为折叠后的△APD与△PCQ重叠部分的面积。应用△CFO∽△CPD和△PFO∽△PEQ得比例式求出OF的长即可求得△PCO即为折叠后的△APD与△PCQ重叠部分的面积
举一反三
如图,已知抛物线与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.

(1)求抛物线的函数表达式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为      
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,直线与直线y=x交于点A,点B在直线上,∠BOA=90°.抛物线过点A,O,B,顶点为点E.

(1)求点A,B的坐标;
(2)求抛物线的函数表达式及顶点E的坐标;
(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.
题型:不详难度:| 查看答案
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:
①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,
错误的个数有【   】
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是【   】
A.B.C.D.

题型:不详难度:| 查看答案
二次函数的图象的顶点坐标是【   】
A.(1,3)B.(,3)C.(1,D.(

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.