如图,正方形AOCB在平面直角坐标系中,点O为原点,点B在反比例函数(>)图象上,△BOC的面积为.(1)求反比例函数的关系式; (2)若动点E从A开始沿AB向

如图,正方形AOCB在平面直角坐标系中,点O为原点,点B在反比例函数(>)图象上,△BOC的面积为.(1)求反比例函数的关系式; (2)若动点E从A开始沿AB向

题型:不详难度:来源:
如图,正方形AOCB在平面直角坐标系中,点O为原点,点B在反比例函数)图象上,△BOC的面积为

(1)求反比例函数的关系式;
(2)若动点E从A开始沿AB向B以每秒1个单位的速度运动,同时动点F 从B开始沿BC向C以每秒个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.若运动时间用t表示,△BEF的面积用表示,求出S关于t的函数关系式,并求出当运动时间t取何值时,△BEF的面积最大?
(3)当运动时间为秒时,在坐标轴上是否存在点P,使△PEF的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
答案
解:(1)∵四边形AOCB为正方形 ,∴AB=BC=OC=OA。
设点B坐标为(),
,∴,解得
又∵点B在第一象限,∴点B坐标为(4,4)。
将点B(4,4)代入
∴反比例函数解析式为
(2)∵运动时间为t,动点E的速度为每秒1个单位,点F 的速度为每秒2个单位,
∴AE=t, BF
∵AB=4,∴BE=

∴S关于t的函数关系式为;当时,△BEF的面积最大。
(3)存在。
时,点E的坐标为(,4),点F的坐标为(4,),
①作F点关于轴的对称点F1,得F1(4,),经过点E、F1作直线,
由E,4),F1(4,)可得直线EF1的解析式是
时,,∴P点的坐标为(,0)。
②作E点关于轴的对称点E1,得E1,4),经过点E1、F作直线,
由E1,4),F(4,)可得直线E1F的解析式是
时,,∴P点的坐标为(0,)。
综上所述,P点的坐标分别为(,0)或(0,)。
解析

试题分析:(1)根据正方形的性质和△BOC的面积为,列式求出点B的坐标,代入,即可求得k,从而求得反比例函数的关系式。
(2)根据双动点的运动时间和速度表示出BF和BE,即可求得S关于t的函数关系式,化为顶点式即可根据二次函数的最值原理求得△BEF的面积最大时t的值。
(3)根据轴对称的原理,分F点关于轴的对称点F1和E点关于轴的对称点E1两种情况讨论。
举一反三
如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线经过A、C两点,与x轴的另一个交点是点D,连接BD.

(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.
题型:不详难度:| 查看答案
如图,抛物线与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为   

题型:不详难度:| 查看答案
如图,抛物线与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.

(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.
题型:不详难度:| 查看答案
如图,抛物线的对称轴是直线x=,与x轴交于点A、B两点,与y轴交于点C,并且点A的坐标为(—1,0).

(1)求抛物线的解析式;
(2)过点C作CD//x轴交抛物线于点D,连接AD交y轴于点E,连接AC,设△AEC的面积为S1, △DEC的面积为S2,求S1:S2的值;
(3)点F坐标为(6,0),连接D,在(2)的条件下,点P从点E出发,以每秒3个单位长的速度沿E→C→D→F匀速运动;点Q从点F出发,以每秒2个单位长的速度沿F→A匀速运动,当其中一点到达终点时,另外一点也随之停止运动.若点P、Q同时出发,设运动时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是直角三角形?请直接写出所有符合条件的t值..
题型:不详难度:| 查看答案
二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.