如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=1200.(1)求这条抛物线的表达式;(2)连接OM,求

如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=1200.(1)求这条抛物线的表达式;(2)连接OM,求

题型:不详难度:来源:
如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=1200

(1)求这条抛物线的表达式;
(2)连接OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.
答案
解:(1)如图,过点A作AD⊥y轴于点D,

∵AO=OB=2,∴B(2,0)。
∵∠AOB=1200,∴∠AOD=300,∴AD=1,OD=
∴A(-1,)。
将A(-1,),B(2,0)代入,得:
,解得
∴这条抛物线的表达式为
(2)过点M作ME⊥x轴于点E,


∴M(1,),即OE=1,EM=
。∴

(3)过点A作AH⊥x轴于点H ,

∵AH=,HB=HO+OB=3,

,∴

∴要△ABC与△AOM相似,则必须:
,或②
设点C的坐标为(c,0),则根据坐标和勾股定理,有
AO=2,
①由得,,解得。∴C1(4,0)。
②由得,,解得。∴C2(8,0)。
综上所述,如果点C在x轴上,且△ABC与△AOM相似,则点C的坐标为(4,0)或(8,0)。
解析

试题分析:(1)应用三角函数求出点A的坐标,将A,B的坐标代入,即可求得a、b,从而求得抛物线的表达式。
(2)应用二次函数的性质,求出点M的坐标,从而求得,进而求得∠AOM的大小。
(3)由于可得,根据相似三角形的判定,分两种情况讨论。
举一反三
某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个)

30
40
50
60

销售量y(万个)

5
4
3
2

同时,销售过程中的其他开支(不含造价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?
题型:不详难度:| 查看答案
如图.在平面直角坐标系中,边长为的正方形ABCD的顶点A、B在x轴上,连接OD、BD、△BOD的外心I在中线BF上,BF与AD交于点E.

(1)求证:△OAD≌△EAB;
(2)求过点O、E、B的抛物线所表示的二次函数解析式;
(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;
(4)连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,求点M的坐标.
题型:不详难度:| 查看答案
如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).

(1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;
(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.
题型:不详难度:| 查看答案
如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为
A.B.C.D.

题型:不详难度:| 查看答案
如图,正方形AOCB在平面直角坐标系中,点O为原点,点B在反比例函数)图象上,△BOC的面积为

(1)求反比例函数的关系式;
(2)若动点E从A开始沿AB向B以每秒1个单位的速度运动,同时动点F 从B开始沿BC向C以每秒个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.若运动时间用t表示,△BEF的面积用表示,求出S关于t的函数关系式,并求出当运动时间t取何值时,△BEF的面积最大?
(3)当运动时间为秒时,在坐标轴上是否存在点P,使△PEF的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.