已知:抛物线C1:y=x2。如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D。(1)求抛物线

已知:抛物线C1:y=x2。如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D。(1)求抛物线

题型:不详难度:来源:
已知:抛物线C1:y=x2。如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D。

(1)求抛物线C2的解析式;
(2)探究四边形ODAB的形状并证明你的结论;
(3)如图(2),将抛物线C2向下平移m个单位(m>0)得抛物线C3,C3的顶点为G,与y轴交于M。点N是M关于x轴的对称点,点P()在直线MG上。问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?
答案
解:(1)∵抛物线C2经过点O(0,0),∴设抛物线C2的解析式为
∵抛物线C2经过点A(2,0),∴,解得
∴抛物线C2的解析式为
(2)∵,∴抛物线C2的顶点D的坐标为(1,)。
当x=1时, ,∴点B的坐标为(1,1)。
∴根据勾股定理,得OB=AB=OD=AD=。∴四边形ODAB是菱形。
又∵OA=BD=2,∴四边形ODAB是正方形。
(3)∵抛物线C3由抛物线C2向下平移m个单位(m>0)得到,
∴抛物线C3的解析式为
中令x=0,得,∴M
∵点N是M关于x轴的对称点,∴N。∴MN=
当M、N、P、Q为顶点的四边形为平行四边形时有两种情况:
①若MN是平行四边形的一条边,由MN=PQ=和P()得Q()。
∵点Q 在抛物线C3上,∴,解得(舍去)。
②若MN是平行四边形的一条对角线,由平行四边形的中心对称性,得Q()。
∵点Q 在抛物线C3上,∴,解得(舍去)。
综上所述,当时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形。
解析

试题分析:(1)根据平移的性质,应用待定系数法即可求得抛物线C2的解析式。
(2)求出各点坐标,应用勾股定理求出各边长和对角线长,根据正方形的判定定理可得结论。
(3)分MN为平行四边形的边和对角线两种情况讨论即可。
举一反三
如图,已知抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,直线x=﹣4交x轴于点C,交抛物线于点D.

(1)求该抛物线的解析式;
(2)点P在抛物线上,点E在直线x=﹣4上,若以A,O,E,P为顶点的四边形是平行四边形,求点P的坐标;
(3)若B,D,C三点到同一条直线的距离分别是d1,d2,d3,问是否存在直线l,使?若存在,请直接写出d3的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是
A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2

题型:不详难度:| 查看答案
如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)

(1)填空:用含t的代数式表示点A的坐标及k的值:A     ,k=     
(2)随着三角板的滑动,当a=时:
①请你验证:抛物线的顶点在函数的图象上;
②当三角板滑至点E为AB的中点时,求t的值;
(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.
题型:不详难度:| 查看答案
已知抛物线的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.

(1)求点A、B、C、D的坐标;
(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;
(3)取点E(,0)和点F(0,),直线l经过E、F两点,点G是线段BD的中点.
①点G是否在直线l上,请说明理由;
②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.