如图,已知点A(0,4),B(2,0).(1)求直线AB的函数解析式;(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+

如图,已知点A(0,4),B(2,0).(1)求直线AB的函数解析式;(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+

题型:不详难度:来源:
如图,已知点A(0,4),B(2,0).

(1)求直线AB的函数解析式;
(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.
①求线段AC的长;(用含m的式子表示)
②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.
答案
解:(1)设直线AB的函数解析式为:y=kx+b,
∵点A坐标为(0,4),点B坐标为(2,0),
,解得:
∴直线AB的函数解析式为y=﹣2x+4。
(2)①∵以M为顶点的抛物线为y=(x﹣m)2+n,
∴抛物线顶点M的坐标为(m,n)。
∵点M在线段AB上,∴n=﹣2m+4。
∴y=(x﹣m)2﹣2m+4。
把x=0代入y=(x﹣m)2﹣2m+4,得y=m2﹣2m+4,
∴C点坐标为(0,m2﹣2m+4)。
∴AC=OA﹣OC=4﹣(m2﹣2m+4)=﹣m2+2m。
②存在某一时刻,能够使得△ACM与△AMO相似。理由如下:
过点M作MD⊥y轴于点D,则D点坐标为(0,﹣2m+4),

∴AD=OA﹣OD=4﹣(﹣2m+4)=2m。
∵M不与点A、B重合,∴0<m<2。
又∵MD=m,∴
∵在△ACM与△AMO中,∠CAM=∠MAO,∠MCA>∠AOM,
∴当△ACM与△AMO相似时,假设△ACM∽△AMO。
,即
整理,得 9m2﹣8m=0,解得m=或m=0(舍去),
∴存在一时刻使得△ACM与△AMO相似,此时m=
解析

试题分析:(1)设直线AB的函数解析式为:y=kx+b,将A、B两点的坐标代入,运用待定系数法即可求出直线AB的函数解析式。
(2)①先由抛物线的顶点式为y=(x﹣m)2+n得出顶点M的坐标为(m,n),由点M是线段AB上一动点,得出n=﹣2m+4,则y=(x﹣m)2﹣2m+4,再求出抛物线y=(x﹣m)2+n与y轴交点C的坐标,然后根据AC=OA﹣OC即可求解。
②过点M作MD⊥y轴于点D,则D点坐标为(0,﹣2m+4),AD=OA﹣OD=2m,由勾股定理求出AM=m.在△ACM与△AMO中,由于∠CAM=∠MAO,∠MCA>∠AOM,所以当△ACM与△AMO相似时,只能是△ACM∽△AMO,根据相似三角形对应边成比例得出,即,解方程求出m的值即可。
举一反三
若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列选项正确的是
A.a>0B.c>0C.ac>0D.bc<0

题型:不详难度:| 查看答案
如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.

(1)求菱形ABCD的周长;
(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;
(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.
题型:不详难度:| 查看答案
将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.

(1)当m=3时,点B的坐标为       ,点E的坐标为         
(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.
(3)如图,若点E的纵坐标为-1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.
题型:不详难度:| 查看答案
铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w(万元)满足w=10x+90.
(1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式.
(2)请问前多少个月的利润和等于1620万元?
题型:不详难度:| 查看答案
如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).

(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.