如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作

如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作

题型:不详难度:来源:
如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.

(1)求这条抛物线所对应的函数关系式.
(2)求点C在这条抛物线上时m的值.
(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.
(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为
答案
(1)
(2)m的值为
(3)①点D的坐标为(,﹣2)。
②m的值为m=或m=或m=或m=
解析

试题分析:(1)将A(﹣1,0)、B(4,0)两点的坐标代入y=ax2+bx﹣2,运用待定系数法即可求出抛物线的解析式。
∵抛物线y=ax2+bx﹣2经过点A(﹣1,0)、B(4,0),
,解得
∴抛物线所对应的函数关系式为
(2)根据等腰直角三角形的性质求出点C的坐标为(m,2),再将C的坐标代入,即可求出m的值。
∵△CMN是等腰直角三角形,∠CMN=90°,∴CM=MN=2。∴点C的坐标为(m,2)。
∵点C(m,2)在抛物线上,∴
解得m1=,m2=
∴点C在这条抛物线上时,m的值为
(3)①先由旋转的性质得出点D的坐标为(m,﹣2),根据二次函数的性质求出抛物线的对称轴为直线x=,然后根据点D在直线x=上,即可求出点D的坐标。
②如图,以DN为直角边作等腰直角三角形DNE,E点的位置有四种情况:

如果E点在E1的位置时,
∵点D的坐标为(m,﹣2),MN=ME1=2,点N的坐标为(m+2,0),
∴点E1的(m﹣2,0)。
∵点E1在抛物线的对称轴x=上,
∴m﹣2=,解得m=
如果E点在E2的位置时,
∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),
∴点E2的(m+2,﹣4)。
∵点E2在抛物线的对称轴x=上,∴m+2=,解得m=
如果E点在E3的位置时,
∵点D的坐标为(m,﹣2),∴点E3的(m,2)。
∵点E3在抛物线的对称轴x=上,∴m=
如果E点在E4的位置时,
∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E4的(m+4,﹣2)。
∵点E4在抛物线的对称轴x=上,∴m+4=,解得m=
综上可知,当点E在这条抛物线的对称轴上时,所有符合条件的m的值为m=或m=或m=或m=
举一反三
抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是
A.x<2B.x>﹣3C.﹣3<x<1D.x<﹣3或x>1

题型:不详难度:| 查看答案
抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(﹣1,﹣6)两点,则a+c=
   
题型:不详难度:| 查看答案
如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:

(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
注:抛物线y=ax2+bx+c(a≠0)的对称轴是
题型:不详难度:| 查看答案
二次函数y=﹣2(x﹣5)2+3的顶点坐标是   
题型:不详难度:| 查看答案
如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.

(1)求此抛物线的解析式.
(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.