某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示. 时间x(天)0481216

某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示. 时间x(天)0481216

题型:不详难度:来源:
某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示.
时间x(天)
0
4
8
12
16
20
销量y1(万朵)
0
16
24
24
16
0
另一部分鲜花在淘宝网销售,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天) 关系如下图所示.

(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;
(2)观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;
(3)设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时最大值.
答案
(1)(0≤x≤20);(2)销售8天后,该花木公司采用了降价促销(或广告宣传)的方法吸引了淘宝买家的注意力,日销量逐渐增加.;(3)第12天,日销售总量最大,最大值为32万朵.
解析

试题分析:(1)由图表数据观察可知y1与x之间是二次函数关系,设将(4,16)代入即可求得结果;
(2)仔细分析图象特征结合待定系数法求函数关系式进行求解即可;
(3)先求出y关于x的二次函数,再根据二次函数的性质求解即可.
(1)由图表数据观察可知y1与x之间是二次函数关系,
将(4,16)代入得:
∴y1与x函数关系式为(0≤x≤20);
(2)销售8天后,该花木公司采用了降价促销(或广告宣传)的方法吸引了淘宝买家的注意力,日销量逐渐增加,
(3)当0≤x≤8时,
∵抛物线开口向下,x的取值范围在对称轴左侧,y随x的增大而增大,
∴当x=8时y有最大值为28
当8<x≤20时,
∵抛物线开口向下,顶点在x的取值范围内
∴当x=12时y有最大值为32
∴该花木公司销售第12天,日销售总量最大,最大值为32万朵.
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
举一反三
已知:如图,直线交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.

(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形.若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.
题型:不详难度:| 查看答案
如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.

(1)求该抛物线的解析式;                                 
(2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大;
(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,抛物线与x轴相交于BC两点,与y轴相交于点AP(2a,-4a2+7a+2)(a是实数)在抛物线上,直线y=k x +b经过AB两点.

(1)求直线AB的解析式;
(2)平行于y轴的直线x=2交直线AB于点D,交抛物线于点E
①直线x=t(0≤t≤4)与直线AB相交F,与抛物线相交于点G.若FGDE=3∶4,求t的值;
②将抛物线向上平移m(m>0)个单位,当EO平分∠AED时,求m的值.
题型:不详难度:| 查看答案
已知二次函数y=x2-6x+m的最小值为1,则m的值是        
题型:不详难度:| 查看答案
如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.

(1) 直接写出点M及抛物线顶点P的坐标;
(2) 求出这条抛物线的函数解析式;
(3) 若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.