如图,抛物线与x轴相交于B,C两点,与y轴相交于点A,P(2a,-4a2+7a+2)(a是实数)在抛物线上,直线y=k x +b经过A,B两点.(1)求直线AB

如图,抛物线与x轴相交于B,C两点,与y轴相交于点A,P(2a,-4a2+7a+2)(a是实数)在抛物线上,直线y=k x +b经过A,B两点.(1)求直线AB

题型:不详难度:来源:
如图,抛物线与x轴相交于BC两点,与y轴相交于点AP(2a,-4a2+7a+2)(a是实数)在抛物线上,直线y=k x +b经过AB两点.

(1)求直线AB的解析式;
(2)平行于y轴的直线x=2交直线AB于点D,交抛物线于点E
①直线x=t(0≤t≤4)与直线AB相交F,与抛物线相交于点G.若FGDE=3∶4,求t的值;
②将抛物线向上平移m(m>0)个单位,当EO平分∠AED时,求m的值.
答案
(1)(2)①t1=1,t2="3" ②
解析

试题分析:(1)∵P(2a,-4a2+7a+2)(a是实数)在抛物线上,
∴抛物线的解析式为y=-4a2+7a+2=-4×()2+7×+2=-x2x+2.
y=0时,即-x2x+2=0,解得x1=-x2=4.
x=0时,y=2.
A(0,2),B(4,0),C(-,0).
解得
故直线AB的解析式为y=x+2.
(2)①∵点E(2,5),D(2,1),Gt,- t2t+2),Ft,-t+2),
DE=4,FG=-t2t+2-(-t+2)=-t2+4t
FGDE=3∶4,
∴-t2+4t=3.
解得t1=1,t2=3.
②设点A(0,2+m),则点E(2,5+m
AHDE,垂足为H
AE2=AH2+HE2=22+(5+m-2-m)2=13.即AE=
EO平分∠AED,∴∠AEO=∠DEO
AOED,∴∠DEO=∠AOE
∴∠AEO=∠AOE

AO=AE,即2+m=.解得m=2-
点评:该题主要考查学生利用待定系数法求一次函数解析式以及分析二次函数在坐标系中的几何意义,是常考题。
举一反三
已知二次函数y=x2-6x+m的最小值为1,则m的值是        
题型:不详难度:| 查看答案
如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.

(1) 直接写出点M及抛物线顶点P的坐标;
(2) 求出这条抛物线的函数解析式;
(3) 若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?
题型:不详难度:| 查看答案
矩形OABC在平 面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线y=-x与BC边相交于D点.

(1)若抛物线y=ax-x经过点A,试确定此抛物线的解析式;
(2)在(1)中的抛物线的对称轴上取一点E,求出EA+ED的最小值;
(3)设(1)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求符合条件的点P的坐标.
题型:不详难度:| 查看答案
如图1,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB =" 2OA" = 4.

(1)求该抛物线的函数表达式;
(2)设P是(1)中抛物线上的一个动点,以P为圆心,R为半径作⊙P,求当⊙P与抛物线的对称轴lx轴均相切时点P的坐标.
(3)动点E从点A出发,以每秒1个单位长度的速度向终点B运动,动点F从点B出发,以每秒个单位长度的速度向终点C运动,过点E作EG//y轴,交AC于点G(如图2).若E、F两点同时出发,运动时间为t.则当t为何值时,△EFG的面积是△ABC的面积的
题型:不详难度:| 查看答案
如图①是矩形包书纸的示意图,虚线是折痕,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.

(1)现有一本书长为25cm,宽为20cm,厚度是2cm,如果按照如图①的包书方式,并且折叠进去的宽度是3cm,则需要书包纸的长和宽分别为多少?(请直接写出答案).
(2)已知数学课本长为26 cm,宽为18.5cm,厚为1cm,小明用一张面积为1260cm2的矩形书包纸按如图①包好了这本书,求折进去的宽度.
(3)如图②,矩形ABCD是一张一个角(△AEF)被污损的书包纸,已知AB=30,BC=50,AE=12,AF=16,要使用没有污损的部分包一本长为19,宽为16,厚为6的字典,小红认为只要按如图②的剪裁方式剪出一张面积最大的矩形PGCH就能包好这本字典. 设PM=x,矩形PGCH的面积为y,当x取何值时y最大?并由此判断小红的想法是否可行.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.