某经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.
题型:不详难度:来源:
某经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元). (1)当每吨售价是240元时,计算此时的月销售量; (2)求出y与x的函数关系式(不要求写出x的取值范围); (3)据(2)中的函数关系式说明,该经销店要获得最大月利润,售价应定为每吨多少元; (4)小明说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. |
答案
华扬经销店要获得最大月利润,材料的售价应定为每吨210元. (4)我认为,小明说的不对. 理由:方法一:当月利润最大时,x为210元, 而对于月销售额来说, 当x为160元时,月销售额W最大. ∴当x为210元时,月销售额W不是最大. ∴小明说的不对. 方法二:当月利润最大时,x为210元,此时,月销售额为17325元; 而当x为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W不是最大. ∴小明说的不对. |
解析
(1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨. (2)根据利润=每件的利润×销售额,可以求出函数的解析式. (3)把(2)中求出的函数解析式转化为顶点式就可以求出售价和利润的最大值. (4)假设当月利润最大,x为210元.而根据题意x为160元时,月销售额w最大,即可得出答案. |
举一反三
如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA:OB=1:5,OB=OC,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点
(1)求此抛物线的函数表达式; (2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长; (3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由. |
关于的二次函数,下列说法正确的是( )A.图象的开口向上 | B.图象与轴的交点坐标为(0,2) | C.图象的顶点坐标是(-1,2) | D.当时,随的增大而减小 |
|
定义符号表示与自变量所对应的函数值。例如对于函数,当时,对应的函数值,则可以写为:。在二次函数中,若对任意实数都成立,那么下列结论错误的是( ) |
若抛物线的顶点在坐标轴上,则k= . |
已知函数(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程的解为 . |
最新试题
热门考点