(1)设该抛物线对应的函数关系式为:y=ax2+c,根据题意知道其上两点,求出a,c; (2)设存在一根系杆的长度恰好是OC长度的一半,即为25米,解得x,然后再作讨论。 解答(1)∵AB=200米,与AB中点O相距20米处有一高度为48米的系杆, ∴由题意可知:B(100,0),M(20,48), 设与该抛物线对应的函数关系式为:y=ax2+c, 则:①10000a+c=0 ②400a+c=48;由①②解得:a=-1/200,c=50。 ∴y="-1/200" x2+50; ∴正中间系杆OC的长度为50m; (2)设存在一根系杆的长度恰好是OC长度的一半,即为25米,则 25="-1/200" x2+50; 解得 x=±50 ∵相邻系杆之间的间距均为5米, ∴每根系杆上点的横坐标均为整数, x=±50与实际不符,∴不存在一根系杆的长度恰好是OC长度的一半。 |