(本题14分)如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A点在B点左侧),与y轴交于C点,顶点为D.过点C、D的直线与x轴交于E点,以OE为直径画⊙

(本题14分)如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A点在B点左侧),与y轴交于C点,顶点为D.过点C、D的直线与x轴交于E点,以OE为直径画⊙

题型:不详难度:来源:
(本题14分)如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A点在B点左侧),与y轴交于C点,顶点为D.过点C、D的直线与x轴交于E点,以OE为直径画⊙O1,交直线CD于P、E两点.

(1)求E点的坐标;
(2)联结PO1、PA.求证:
(3) ①以点O2 (0,m)为圆心画⊙O2,使得⊙O2与⊙O1相切,当⊙O2经过点C时,求实数m
的值;
②在①的情形下,试在坐标轴上找一点O3,以O3为圆心画⊙O3,使得⊙O3与⊙O1、⊙O2同时相切.直接写出满足条件的点O3的坐标(不需写出计算过程).
答案
解:(1) ( 3分) ∴   1分
设直线CD:   将C、D代入得  解得  
∴CD直线解析式:  1分        1分
(2) ( 4分)令y="0 " 得  解得
  1分
又∵ ∴以OE为直径的圆心、半径.
 
 得  解得(舍)
   2分
 
      
  1分 ∴ 
(3) ( 7分)①    
据题意,显然点在点C下方 
当⊙O2与⊙O1外切时 
代入得   解得(舍)2分
当⊙O2与⊙O1内切时 
代入得   解得(舍) 2分
 
    3分
解析

举一反三
(本题满分14分,第(1)、(2)小题每小题满分5分,第(3)小题满分4分)
已知,在边长为6的正方形ABCD的两侧如图作正方形BEFG、正方形DMNK,恰好使得N、A、F三点在一直线上,联结MF交线段AD于点P,联结NP,设正方形BEFG的边长为x,正方形DMNK的边长为y,
(1)求y关于x的函数关系式及自变量x的取值范围;
(2)当△NPF的面积为32时,求x的值;
(3)以P为圆心,AP为半径的圆能否与以G为圆心,GF为半径的圆相切,若能请求x的值,若不能,请说明理由。
题型:不详难度:| 查看答案
(本题10分)已知二次函数的图像与y轴交于点A,且经过点.
(1)求此二次函数的解析式;
(2)将点A沿x轴方向平移,使其落到该函数图像上另一点B处,求点B的坐标.
题型:不详难度:| 查看答案
(2011•广元)在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是(  )
A.y=3(x﹣3)2+3B.y=3(x﹣3)2﹣3
C.y=3(x+3)2+3D.y=3(x+3)2﹣3

题型:不详难度:| 查看答案
(2011•广元)如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q的坐标;
(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
(11分)如图,抛物线经过的三个点,已知轴,点轴上,点轴上,且
(1)求抛物线的对称轴;
(2)写出三点的坐标并求抛物线的解析式;
(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形?若存在,请在图中画出所有符合条件的P点,然后直接写出点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.