(本题满分14分,第(1)、(2)小题每小题满分5分,第(3)小题满分4分)已知,在边长为6的正方形ABCD的两侧如图作正方形BEFG、正方形DMNK,恰好使得

(本题满分14分,第(1)、(2)小题每小题满分5分,第(3)小题满分4分)已知,在边长为6的正方形ABCD的两侧如图作正方形BEFG、正方形DMNK,恰好使得

题型:不详难度:来源:
(本题满分14分,第(1)、(2)小题每小题满分5分,第(3)小题满分4分)
已知,在边长为6的正方形ABCD的两侧如图作正方形BEFG、正方形DMNK,恰好使得N、A、F三点在一直线上,联结MF交线段AD于点P,联结NP,设正方形BEFG的边长为x,正方形DMNK的边长为y,
(1)求y关于x的函数关系式及自变量x的取值范围;
(2)当△NPF的面积为32时,求x的值;
(3)以P为圆心,AP为半径的圆能否与以G为圆心,GF为半径的圆相切,若能请求x的值,若不能,请说明理由。
答案
(1)∵正方形BEFG、正方形DMNK、正方形ABCD
∴∠E=∠F=90O,AE//MC,MC//NK              
∴AE//NK      ∴∠KNA=∠EAF
……………………………………………………………(2分)
   即   ……………………………………(1分)
     …………………………………………(2分)
(2)由(1)可知:  ∴
∵正方形DMNK   ∴    ∴
     ………………………………………………………(2分)
……………………………………………………(1分)
 ……………………………………………(1分)
     ∴………………………………………………(1分)
(3)联结PG,延长FG交AD于H点,则
易知:。……(1分)
①当两圆外切时,在中, (1分)
解得:(负值舍去)
②当两圆内切时,在中,  即
方程无解                   …………………………(1分)
所以,当时,这两个圆相切。……………………
解析

举一反三
(本题10分)已知二次函数的图像与y轴交于点A,且经过点.
(1)求此二次函数的解析式;
(2)将点A沿x轴方向平移,使其落到该函数图像上另一点B处,求点B的坐标.
题型:不详难度:| 查看答案
(2011•广元)在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是(  )
A.y=3(x﹣3)2+3B.y=3(x﹣3)2﹣3
C.y=3(x+3)2+3D.y=3(x+3)2﹣3

题型:不详难度:| 查看答案
(2011•广元)如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q的坐标;
(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
(11分)如图,抛物线经过的三个点,已知轴,点轴上,点轴上,且
(1)求抛物线的对称轴;
(2)写出三点的坐标并求抛物线的解析式;
(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形?若存在,请在图中画出所有符合条件的P点,然后直接写出点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
(本题12分)阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部的线段的长度叫△ABC的“铅垂高”(h).我们可行出生种计算三角形面积的新方示:,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)求△ABC的铅垂高CD及SABC
(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使
若存在,求出P点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.