(2011•宁夏)在等腰△ABC中,AB=AC=5,BC=6.动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC.将△AMN沿

(2011•宁夏)在等腰△ABC中,AB=AC=5,BC=6.动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC.将△AMN沿

题型:不详难度:来源:
(2011•宁夏)在等腰△ABC中,AB=AC=5,BC=6.动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.
(1)当MN为何值时,点P恰好落在BC上?
(2)当MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式.当x为何值时,y的值最大,最大值是多少?
答案
解:(1)连接AP,交MN于O,
∵将△AMN沿MN所在的直线折叠,使点A的对应点为P,
∴OA=OP,AP⊥MN,AN=PN,AM=PM,
∵MN∥BC,
∴△AMN∽△ABC,AO⊥MN,

∵BC=6,
∴MN=3,
∴当MN=3时,点P恰好落在BC上;

(2)过点A作AD⊥BC于D,交MN于O,
∵MN∥BC,
∴AO⊥MN,
∴△AMN∽△ABC,

∵AB=AC=5,BC=6,AD⊥BC,
∴∠ADB=90°,BD=BC=3,
∴AD=4,

∴AO=x,
∴S△AMN=MN•AO=•x•x=x2
当AO≤AD时,
根据题意得:S△PMN=S△AMN
∴△MNP与等腰△ABC重叠部分的面积为S△AMN
∴y=x2
∴当AO=AD时,即MN=BC=3时,y最小,最小值为3;
当AO>AD时,

连接AP交MN于O,
则AO⊥MN,
∵MN∥BC,
∴AP⊥BC,△AMN∽△ABC,△PEF∽△PMN∽△AMN,

即:
∴AO=x,

∴EF=2x﹣6,OD=AD﹣AO=4﹣x,
∴y=S梯形MNFE=(EF+MN)•OD=×(2x﹣6+x)×(4﹣x)=﹣(x﹣4)2+4,
∴当x=4时,y有最大值,最大值为4,
综上所述:当x=4时,y的值最大,最大值是4.

解析

举一反三
(2011年青海,18,3分)将y=2x2的函数图象向左平移2个单位长度后,得到的函数解析式是(  )
A.y=2x2+2B.y=2(x+2)2C.y=(x-2)2D.y=2x2-2

题型:不详难度:| 查看答案
(2011年青海,28,12分已知一元二次方程x2-4x+3=0的两根是m,n且m<n.如图12,若抛物线y=-x2+bx
+c的图像经过点A(m,0)、B(0,n).
(1)求抛物线的解析式.
(2)若(1)中的抛物线与x轴的另一个交点为C.根据图像回答,当x取何值时,抛物线的图像在直线BC的上方?
(3)点P在线段OC上,作PE⊥x轴与抛物线交与点E,若直线BC将△CPE的面积分成相等的两部分,求点P的坐标.
题型:不详难度:| 查看答案
(2011•陕西)若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(,y3),则y1,y2,y3的大小关系是(  )
A.y1>y2>y3B.y1>y3>y2
C.y2>y1>y3D.y3>y1>y2

题型:不详难度:| 查看答案
(2011•雅安)将二次函数y=(x﹣2)2+3的图象向右平移2个单位,再向下平移2个单位,所得二次函数的解析式为 . 
题型:不详难度:| 查看答案
(2011•雅安)如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数上,且与x轴交于AB两点.
(1)若二次函数的对称轴为,试求a,c的值;
(2)在(1)的条件下求AB的长;
(3)若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,试求二次函数的解析式.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.