(11·丹东)(本题14分)已知:二次函数与轴交于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程的两个根.(1)请直接写出点A、点B的坐标.(

(11·丹东)(本题14分)已知:二次函数与轴交于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程的两个根.(1)请直接写出点A、点B的坐标.(

题型:不详难度:来源:
(11·丹东)(本题14分)已知:二次函数轴交于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合). 过点Q作QD∥AC交于BC点D,设Q点坐标(m,0),当面积S最大时,求m的值.
答案
(1)A(-2,0)、B(6,0)
(2)将A(-2,0)、B(6,0)代入 则
     
    
∴对称轴为直线   顶点为
(3)∵A、B两点关于对称轴 对称,连结BC交对称轴 于点P,则点P即为所求

∵B(6,0)、C(0,6) 所以过BC两点的直线为:
代入,则   ∴ P(2,4)
(4)∵Q(m,0)    0<m<6    ∴ AQ="2+m     " BQ=6-m

     QD∥AC,  
     

∴当时,的面积最大.   即    m=2
解析

举一反三
(11·十堰)12分)如图,已知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,-3)。
(1)求抛物线的解析式;
(2)如图(1),已知点H(0,-1).问在抛物线上是否存在点G(点G在y轴的左侧),使得SGHC=SGHA?若存在,求出点G的坐标,若不存在,请说明理由;
(3)如图(2),抛物线上点D在x轴上的正投影为点E(-2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.
题型:不详难度:| 查看答案
(11·孝感)(满分14分)如图(1),矩形ABCD的一边BC在直接坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(),其中.
(1)求点E、F的坐标(用含的式子表示);(5分)
(2)连接OA,若△OAF是等腰三角形,求的值;(4分)
(3)如图(2),设抛物线经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求的值.(5分)
题型:不详难度:| 查看答案
(2011山东济南,27,9分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
(11·兵团维吾尔)(8分)已知抛物线y=-x2+4x-3与x轴交于A、B两点(A
点在B点左侧),顶点为P.
(1)求A、B、P三点的坐标;
(2)在直角坐标系中,用列表描点法作出抛物线的图象,并根据图象写出x取何值时,函
数值大于零;
(3)将此抛物线的图象向下平移一个单位,请写出平称后图象的函数表达式.

题型:不详难度:| 查看答案
(11·曲靖)(9分)一名男生推铅球,铅球行进高度y(单位:m)与水平距离x


(1)求铅球推出的水平距离;
(2)通过计算说明铅球行进高度能否达到4m。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.