如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-23x2+bx+c的图象经过B、C两点.(1)直接

如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-23x2+bx+c的图象经过B、C两点.(1)直接

题型:不详难度:来源:
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-
2
3
x2+bx+c
的图象经过B、C两点.
(1)直接写出点B、点C坐标;
(2)求该二次函数的解析式;
(3)结合函数的图象探索,直接写出不等式-
2
3
x2+bx+c≥0
的解集为______.
答案
(1)∵边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,
∴由题意可得:AB=2,BC=2,
故:B(2,2),C(0,2);

(2)将B、C坐标代入y=-
2
3
x2+bx+c
得:





2=-
2
3
×22+2b+c
c=2

解得:





b=
4
3
c=2

故二次函数的解析式是y=-
2
3
x2+
4
3
x+2;

(3)当y=0,
则0=-
2
3
x2+
4
3
x+2,
解得:x1=-1,x2=3,
则二次函数与x轴的交点坐标为(-1,0)(3,0),
故不等式-
2
3
x2+bx+c≥0
的解集为:-1≤x≤3.
故答案为:-1≤x≤3.
举一反三
如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图(a),点F、G、H、E分别从正方形ABCD的顶点B、C、D、A同时出发,以1cm/s的速度沿着正方形的边向C、D、A、B运动.若设运动时间为x(s),问:
(1)四边形EFGH是什么图形?证明你的结论;
(2)若正方形ABCD的边长为2cm,四边形EFGH的面积为y(cm2),求y关于x的函数解析式和自变量x的取值范围;
(3)若改变点的连接方式(如图(b)),其余不变.则当动点出发几秒时,图中空白部分的面积为3cm2
题型:不详难度:| 查看答案
如图,已知二次函数y=
1
2
x2+bx+c的图象与x轴只有一个公共点M,与y轴的交点为A,过点A的直线y=x+c与x轴交于点N,与这个二次函数的图象交于点B.
(1)求点A、B的坐标(用含b、c的式子表示);
(2)当S△BMN=4S△AMN时,求二次函数的解析式;
(3)在(2)的条件下,设点P为x轴上的一个动点,那么是否存在这样的点P,使得以P、A、M为顶点的三角形为等腰三角形?若存在,请写出符合条件的所有点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,抛物线y=
3
8
x2-
3
4
x+c分别交x轴的负半轴和正半轴于点A(x1,0)、B(x2,0),交y轴的负轴于点C,且tan∠OAC=2tan∠OBC,动点P从点A出发向终点B运动,同时动点Q从点B出发向终点C运动,P、Q的运动速度均为每秒1个单位长度,且当其中有一个点到达终点时,另一个点也随之停止运动,设运动的时间是t秒.

(1)试说明OB=2OA;
(2)求抛物线的解析式;
(3)当t为何值时,△PBQ是直角三角形?
(4)当t为何值时,△PBQ是等腰三角形?
题型:不详难度:| 查看答案
如图,抛物线y=x2+bx+c与x轴的右交点为A,顶点D在矩形OABC的边BC上,当y≤0时,x的取值范围是1≤x≤5.
(1)求b,c的值;
(2)直线y=mx+n经过抛物线的顶点D,该直线在矩形OABC内部分割出的三角形的面积记为S,求S与m的函数关系式,并写出自变量m的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.