(1)∵OA=,AB=AC=2, ∴B(-,0),C(3,0),连接AD, 在Rt△AOD中,AD=2,OA=, ∴OD==3, ∴D的坐标为(0,-3),(3分) 又∵D,C两点在抛物线上, ∴, 解得, ∴抛物线的解析式为:y=x2-x-3,(5分) 当x=-时,y=0, ∴点B(-,0)在抛物线上,(6分)
(2)∵y=x2-x-3, =(x-)2-4, ∴抛物线y=x2-x-3的对称轴方程为x=,(7分) 在抛物线的对称轴上存在点P,使△PBD的周长最小. ∵BD的长为定值∴要使△PBD周长最小只需PB+PD最小. 连接DC,则DC与对称轴的交点即为使△PBD周长最小的点. 设直线DC的解析式为y=mx+n. 由, 得, ∴直线DC的解析式为y=x-3. 由, 得, 故点P的坐标为(,-2).(9分)
(3)存在,设Q(,t)为抛物线对称轴x=上一点, M在抛物线上要使四边形BCQM为平行四边形, 则BC∥QM且BC=QM,点M在对称轴的左侧. 于是,过点Q作直线L∥BC与抛物线交于点M(xm,t), 由BC=QM得QM=4, 从而xm=-3,t=12, 另外:M在抛物线的顶点上也可以构造平行四边形! 故在抛物线上存在点M(-3,12)或(5,12)或(,-4),使得四边形BCQM为平行四边形.(12分) |