已知函数y1=x,y2=x2+bx+c,α,β为方程y1-y2=0的两个根,点M(t,T)在函数y2的图象上.(Ⅰ)若α=13,β=12,求函数y2的解析式;(

已知函数y1=x,y2=x2+bx+c,α,β为方程y1-y2=0的两个根,点M(t,T)在函数y2的图象上.(Ⅰ)若α=13,β=12,求函数y2的解析式;(

题型:不详难度:来源:
已知函数y1=x,y2=x2+bx+c,α,β为方程y1-y2=0的两个根,点M(t,T)在函数y2的图象上.
(Ⅰ)若α=
1
3
,β=
1
2
,求函数y2的解析式;
(Ⅱ)在(Ⅰ)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为
1
123
时,求t的值;
(Ⅲ)若0<α<β<1,当0<t<1时,试确定T,α,β三者之间的大小关系,并说明理由.
答案
(1)∵y1=x,y2=x2+bx+c,y1-y2=0,
∴x2+(b-1)x+c=0.
将α=
1
3
,β=
1
2
分别代入x2+(b-1)x+c=0,
得(
1
3
2+(b-1)×
1
3
+c=0,(
1
2
2+(b-1)×
1
2
+c=0,
解得b=
1
6
,c=
1
6

∴函数y2的解析式为y2=x2+
1
6
x+
1
6


(2)由已知得:A(
1
2
1
2
),B(
1
3
1
3
),得AB=


(
1
2
-
1
3
)
2
+(
1
2
-
1
3
)2
=


2
6

设△ABM的高为h,
∴S△ABM=
1
2
AB•h=


2
12
h=
1
123
,即


2
h=
1
144

根据题意:|t-T|=


2
h,
由T=t2+
1
6
t+
1
6

得:|-t2+
5
6
t-
1
6
|=
1
144

当t2-
5
6
t+
1
6
=-
1
144
时,解得:t1=t2=
5
12

当t2-
5
6
t+
1
6
=
1
144
时,解得:t3=
5-


2
12
,t4=
5+


2
12

∴t的值为:
5
12
5-


2
12
5+


2
12


(3)由已知,得α=α2+bα+c,β=β2+bβ+c,T=t2+bt+c.
∴T-α=(t-α)(t+α+b);
T-β=(t-β)(t+β+b);
α-β=(α2+bα+c)-(β2+bβ+c),
化简得(α-β)(α+β+b-1)=0.
∵0<α<β<1,得α-β≠0,
∴α+β+b-1=0.
有α+b=1-β>0,β+b=1-α>0.
又∵0<t<1,
∴t+α+b>0,t+β+b>0,
∴当0<t≤a时,T≤α<β;
当α<t≤β时,α<T≤β;
当β<t<1时,α<β<T.
举一反三
如图1,直线y=-
2
3
x+2
与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(-1,0).

(1)求B、C两点的坐标及该抛物线所对应的函数关系式;
(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线ay轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.
①求S与m之间的函数关系式,并写出自变量m的取值范围;
②求S的最大值,并判断此时△OBE的形状,说明理由;
(3)过点P作直线bx轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求这条抛物线的顶点坐标;
(3)若b>3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)
题型:不详难度:| 查看答案
抛物线y=ax2+bx+c,与x轴交于点A(-3,0),对称轴为x=-1,顶点C到x轴的距离为2,求此抛物线的解析式.
题型:不详难度:| 查看答案
如图,抛物线y=x2+2x-3与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的顶点坐标;
(2)设直线y=x+3与y轴的交点是D,在线段AD上任意取一点E(不与A、D重合),经过A、B、E三点的圆交直线AC于点F,试判断△BEF的形状.
题型:不详难度:| 查看答案
有一条长7.2米的木料,做成如图所示的“日”字形的窗框,问窗的高和宽各取多少米时,这个窗的面积最大?(不考虑木料加工时损耗和中间木框所占的面积)
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.