如图,C(0,3),过点C开口向下的抛物线交x轴于点A、B(点A在点B的右边),已知∠CBA=45°,tanA=3;(1)求A、B两点坐标;(2)求抛物线解析式

如图,C(0,3),过点C开口向下的抛物线交x轴于点A、B(点A在点B的右边),已知∠CBA=45°,tanA=3;(1)求A、B两点坐标;(2)求抛物线解析式

题型:不详难度:来源:
如图,C(0,3),过点C开口向下的抛物线交x轴于点A、B(点A在点B的右边),已知∠CBA=45°,tanA=3;
(1)求A、B两点坐标;
(2)求抛物线解析式及抛物线顶点D的坐标;
(3)E(0,m)为y轴上一动点(不与点C重合)
①当直线EB与△BCD外接圆相切时,求m的值;
②指出点E的运动过程中,∠DEC与∠DBC的大小关系及相应m的取值范围.
答案
(1)∵C(0,3)
∴OC=3
∵∠CBA=45°
∴OC=OB=3
∵tanA=3
OC
OA
=3
,即
3
OA
=3

∴OA=1
∴A(1,O),B(-3,0)

(2)设抛物线的解析式为:y=a(x-1)(x+3)
把C(0,3)代入得-3a=3
∴a=-1
∴y=-(x-1)(x+3)
y=-x2-2x+3
∴-
b
2a
=-1,
4ac-b2
4a
=4
∴D(-1,4)

(3)①作DH⊥y轴于H,则DH=1,CH=OH-OC=1
由勾股定理得:CD=


2
,CD2=2
在△BOC中,由勾股定理得,BC=


2
OC
∴BC=3


2
,BC2=18
在Rt△BDF中,BF=BO-OF=2,DF=4,由勾股定理得;
BD=2


5
∴DB2=20
在△BCD中∴CD2+BC2=DB2
∴△BCD是直角三角形.
∴BD是△BCD的外接圆的直径
∵BE与△BCD的外接圆相切
∴BE⊥BD
∴∠DBE=90°
∴∠EBO=∠BDF
∴△BDF△EBO
OE
BF
=
OB
DF
OE
2
=
3
4

∴OE=
3
2

∴E(0,-
3
2

即m=-
3
2

②当点E在C点的上方时,当∠DEC=∠DBC时,
∵∠DHE=∠DCB=90°
∴△DEH△DBC
EH
DH
=
BC
DC
=3

∴EH=3,OE=EH+HO=7
∴E(0,7)
∴当m=7时,∠DEC=∠DBC
当m>时,∠DEC<∠DBC
当m<7时,∠DEC>∠DBC
点E在C下方时,同理可得当∠DEC=∠DBC时,EH=3
∴此时OE=4-3=1
∴E(0,1)
∴当m=1时,∠DEC=∠DBC
当1<m<3时,∠DEC>∠DBC
当m<1时,∠DEC<∠DBC
综上所述得:m>7或m<1时,∠DEC<∠DBC
m=7或m=1时,∠DEC=∠DBC
1<m<7且m≠3时,∠DEC>∠DBC
举一反三
如图,抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).
(1)求此抛物线的解析式;
(2)若此抛物线的顶点为P,将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO′C′.
①当O′C′CP时,求α的大小;
②△BOC在第一象限内旋转的过程中,当旋转后的△BO′C′有一边与BP重合时,求△BO′C′不在BP上的顶点的坐标.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,抛物线y=-
1
2
x2+bx+c
经过A(-2,0),C(4,0)两点,和y轴相交于点B,连接AB、BC.
(1)求抛物线的解析式(关系式).
(2)在第一象限外,是否存在点E,使得以BC为直角边的△BCE和Rt△AOB相似?若存在,请简要说明如何找到符合条件的点E,然后直接写出点E的坐标,并判断是否有满足条件的点E在抛物线上;若不存在,请说明理由.
(3)在直线BC上方的抛物线上,找一点D,使S△BCD:S△ABC=1:4,并求出此时点D的坐标.
题型:不详难度:| 查看答案
某商店经销甲、乙两种商品,现有如下信息:
信息1:甲、乙两种商品的进货单价之和是5元.
信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元.
信息3:按零售单价购买甲商品3件和乙商品2件,共付了19元.
请根据以上信息,解答下列问题:
(Ⅰ)甲、乙两种商品的进货单价各是多少元?
(Ⅱ)该商品平均每天卖出甲商品500件和乙商品300件,经调查发现,甲、乙两种商品零售单价分别降0.1元,这两种商品每天可各多销售100件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?
题型:不详难度:| 查看答案
如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.
(1)求抛物线解析式;
(2)BC的垂直平分线交抛物线于D、E两点,求直线DE的解析式.
题型:不详难度:| 查看答案
一名学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的函数关系为y=-
1
12
x2+
2
3
x+
5
3

(1)画出函数的图象.
(2)观察图象,指出铅球推出的距离.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.