如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=35x2+bx+c经过A、C

如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=35x2+bx+c经过A、C

题型:不详难度:来源:
如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=
3
5
x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接BD.
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.
答案
(1)∵矩形ABCD,B(5,3),
∴A(5,0),C(0,3).
∵点A(5,0),C(0,3)在抛物线y=
3
5
x2+bx+c上,





3
5
×25+5b+c=0
c=3
,解得:b=-
18
5
,c=3.
∴抛物线的解析式为:y=
3
5
x2-
18
5
x+3.

(2)如答图1所示,
∵y=
3
5
x2-
18
5
x+3=
3
5
(x-3)2-
12
5

∴抛物线的对称轴为直线x=3.
如答图1所示,设对称轴与BD交于点G,与x轴交于点H,则H(3,0).

令y=0,即
3
5
x2-
18
5
x+3=0,解得x=1或x=5.
∴D(1,0),∴DH=2,AH=2,AD=4.
∵tan∠ADB=
AB
AD
=
3
4
,∴GH=DH•tan∠ADB=2×
3
4
=
3
2

∴G(3,
3
2
).
∵S△MBD=6,即S△MDG+S△MBG=6,
1
2
MG•DH+
1
2
MG•AH=6,
即:
1
2
MG×2+
1
2
MG×2=6,
解得:MG=3.
∴点M的坐标为(3,
9
2
)或(3,-
3
2
).

(3)在Rt△ABD中,AB=3,AD=4,则BD=5,∴sinB=
4
5
,cosB=
3
5

以D、P、Q为顶点的三角形是等腰三角形,则:
①若PD=PQ,如答图2所示:
此时有PD=PQ=BQ=t,过点Q作QE⊥BD于点E,
则BE=PE,BE=BQ•cosB=
3
5
t,QE=BQ•sinB=
4
5
t,
∴DE=t+
3
5
t=
8
5
t.
由勾股定理得:DQ2=DE2+QE2=AD2+AQ2
即(
8
5
t)2+(
4
5
t)2=42+(3-t)2
整理得:11t2+6t-25=0,
解得:t=
25
11
或t=-5(舍去),
∴t=
25
11


②若PD=DQ,如答图3所示:
此时PD=t,DQ=AB+AD-t=7-t,
∴t=7-t,
∴t=
7
2

③若PQ=DQ,如答图4所示:
∵PD=t,∴BP=5-t;
∵DQ=7-t,∴PQ=7-t,AQ=4-(7-t)=t-3.
过点P作PF⊥AB于点F,则PF=PB•sinB=(5-t)×
4
5
=4-
4
5
t,BF=PB•cosB=(5-t)×
3
5
=3-
3
5
t.
∴AF=AB-BF=3-(3-
3
5
t)=
3
5
t.
过点P作PE⊥AD于点E,则PEAF为矩形,
∴PE=AF=
3
5
t,AE=PF=4-
4
5
t,∴EQ=AQ-AE=(t-3)-(4-
4
5
t)=
9
5
t-7.
在Rt△PQE中,由勾股定理得:EQ2+PE2=PQ2
即:(
9
5
t-7)2+(
3
5
t)2=(7-t)2
整理得:13t2-56t=0,
解得:t=0(舍去)或t=
56
13

∴t=
56
13

综上所述,当t=
25
11
,t=
7
2
或t=
56
13
时,以D、P、Q为顶点的三角形是等腰三角形.
举一反三
如图,梯形ABCD是世纪广场的示意图,上底AD=90m,下底BC=150m,高100m,虚线MN是梯形ABCD的中位线.要设计修建宽度相同的一条横向和两条纵向大理石通道,横向通道EGHF位于MN两旁,且EF、GH与MN之间的距离相等,两条纵向通道均与BC垂直,设通道宽度为xm.
(1)试用含x的代数式表示横向通道EGHF的面积s1
(2)若三条通道的面积和恰好是梯形ABCD面积的
1
4
时,求通道宽度为x;
(3)经测算大理石通道的修建费用y1(万元)与通道宽度为xm的关系式为:y1=14x,广场其余部分的绿化费用为0.05万元/m2,若设计要求通道宽度x≤8m,则宽度x为多少时,世纪广场修建总费用最少?最少费用为多少?
题型:不详难度:| 查看答案
随着海峡两岸交流日益增强,通过“零关税”进入我市的一种台湾水果,其进货成本是每吨0.5万元,这种水果市场上的销售量y(吨)是每吨的销售价x(万元)的一次函数,且x=0.6时,y=2.4;x=1时,y=2.
(1)求出销售量y(吨)与每吨的销售价x(万元)之间的函数关系式;
(2)若销售利润为w(万元),请写出w与x之间的函数关系式,并求出销售价为每吨2万元时的销售利润.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,
9
2
).
(1)求抛物线的函数表达式;
(2)设抛物线的对称轴与x轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标;
(3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EFAC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.
(1)求点B的坐标;
(2)求经过点A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,直线AB、CD分别经过点(0,1)和(0,2)且平行于x轴,图1中射线OA为正比例函数y=kx(k>0)在第一象限的部分图象,射线OB与OA关于y轴对称;图2为二次函数y=ax2(a>0)的图象.
(1)如图l,求证:
AB
CD
=
1
2

(2)如图2,探索:
AB
CD
的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.