用长8m的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是(  )A.6425m2B.43m2C.83m2D.4m2

用长8m的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是(  )A.6425m2B.43m2C.83m2D.4m2

题型:不详难度:来源:
用长8m的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是(  )
A.
64
25
m2
B.
4
3
m2
C.
8
3
m2
D.4m2

答案
设窗的高度为xm,宽为(
8-2x
3
)m,
故S=
x(8-2x)
3

3S
2
=x(4-x)

即S=-
2
3
(x-2)
2
+
8
3

∴当x=2m时,S最大值为
8
3
m2
故选C.
举一反三
已知,如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),其对称轴为直线x=2.
(1)求抛物线的解析式;
(2)若点P为抛物线的顶点,求△PBC的面积.
题型:不详难度:| 查看答案
已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.
题型:不详难度:| 查看答案
已知抛物线C1如图1所示,现将C1以y轴为对称轴进行翻折,得到新的抛物线C2
(1)求抛物线C2的解析式;
(2)在图1中,将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,请直接(不需要写过程)写出矩形的周长;
(3)如图2,若抛物线C1的顶点为M,点P为线段BM上一动点(不与点M、B重合),PN⊥x轴于N,请求出PC+PN的最小值.
题型:不详难度:| 查看答案
如图二次函数y=ax2+bx+c的图象经过A、B、C三点.
(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;
(2)求此抛物线的顶点坐标和对称轴;
(3)观察图象,当x取何值时,y<0,y=0,y>0.
题型:不详难度:| 查看答案
某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面
40
3
米,则水流下落点B离墙距离OB是(  )
A.2米B.3米C.4米D.5米
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.