某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克,市场调查发现,该产品每天的销售量W(千克)与销售价x(元/千克)有如下关系:W=-2x+80,设

某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克,市场调查发现,该产品每天的销售量W(千克)与销售价x(元/千克)有如下关系:W=-2x+80,设

题型:不详难度:来源:
某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克,市场调查发现,该产品每天的销售量W(千克)与销售价x(元/千克)有如下关系:W=-2x+80,设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
答案
(1)y=(X-20)(-2x+80)
=-2x2+120x-1600;

(2)方法一:
y=-2x2+120x-1600
=-2(x2-60x)-1600
=-2(x-30)2+200;
∴当x=30时,y最大=200;
方法二:-
b
2a
=30,
4ac-b2
4a
=200.
∴当x=30时,y最大=200.
举一反三
如图所示,图①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之间的距离均为15m,B1B5A1A5,将抛物线放在图②所示的直角坐标系中.
(1)直接写出图②中点B1、B3、B5的坐标;
(2)求图②中抛物线的函数表达式;
(3)求图①中支柱A2B2、A4B4的长度.
题型:不详难度:| 查看答案
如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=-
1
2
x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=-
1
2
x2+bx+c交于第四象限的F点.
(1)求该抛物线解析式与F点坐标;
(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒


13
2
个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.
①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.
②若△PMH是等腰三角形,请直接写出此时t的值.
题型:不详难度:| 查看答案
如图,抛物线y=-
5
4
x2+
17
4
x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.
题型:不详难度:| 查看答案
某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.75x,同时预计年销售量增加的比例为0.6x.
(1)求本年度预计的年利润y与投入成本增加的比例x的关系式;
(2)为使本年度的利润比上一年有所增加,投入成本增加的比例应在什么范围?
题型:不详难度:| 查看答案
有一个运算装置,当输入值为x时,其输出值为y,且y是x的二次函数,已知输入值为-2,0,1时,相应的输出值分别为5,-3,-4.
(1)求此二次函数的解析式;
(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y为正数时输入值x的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.