如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,拱桥最高点C到AB的距离为9m,AB=36m,D,E为拱桥底部的两点,且DE∥AB

如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,拱桥最高点C到AB的距离为9m,AB=36m,D,E为拱桥底部的两点,且DE∥AB

题型:不详难度:来源:
如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,拱桥最高点C到AB的距离为9m,AB=36m,D,E为拱桥底部的两点,且DEAB,点E到直线AB的距离为7m,则DE的长为______m.
答案
如图所示,建立平面直角坐标系.

设AB与y轴交于点H,
∵AB=36,
∴AH=BH=18,
由题可知:
OH=7,CH=9,
∴OC=9+7=16,
设该抛物线的解析式为:y=ax2+k,
∵顶点C(0,16),
∴抛物线y=ax2+16,
代入点(18,7)
∴7=18×18a+16,
∴7=324a+16,
∴324a=-9,
∴a=-
1
36

∴抛物线:y=-
1
36
x2+16,
当y=0时,0=-
1
36
x2+16,
∴-
1
36
x2=-16,
∴x2=16×36=576
∴x=±24,
∴E(24,0),D(-24,0),
∴OE=OD=24,
∴DE=OD+OE=24+24=48,
故答案为48.
举一反三
有一座抛物线型拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m.
(1)在如图所示的平面直角坐标系中,求出抛物线解析式;
(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m.求水面在正常水位基础上涨多少m时,就会影响过往船只?
题型:不详难度:| 查看答案
如图1,平面直角坐标系xOy中,抛物线y=
1
2
x2+bx+c
与x轴交于A、B两点,点C是AB的中点,CD⊥AB且CD=AB.直线BE与y轴平行,点F是射线BE上的一个动点,连接AD、AF、DF.
(1)若点F的坐标为(
9
2
,1),AF=


17

①求此抛物线的解析式;
②点P是此抛物线上一个动点,点Q在此抛物线的对称轴上,以点A、F、P、Q为顶点构成的四边形是平行四边形,请直接写出点Q的坐标;
(2)若2b+c=-2,b=-2-t,且AB的长为kt,其中t>0.如图2,当∠DAF=45°时,求k的值和∠DFA的正切值.
题型:不详难度:| 查看答案
二次函数y=ax2+c(a≠0)的图象经过点A(1,-1),B(2,5),
(1)求函数y=ax2+c的表达式.
(2)若点C(-2,m),D(n,7)也在函数的图象上,求点C的坐标;点D的坐标.
题型:不详难度:| 查看答案
甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只.乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个.
请你根据提供的信息说明:
(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;
(2)第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?请说明理由;
(3)哪一年(取整数)的规律(即总产量)最大?请说明理由.
题型:不详难度:| 查看答案
已知抛物线y=ax2-k+m与x轴交于A(1,0),B(x2,0),与y轴负半轴交于点C,AB•OC=6,求抛物线解析式.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.