如图,要设计一个矩形的花坛,花坛长60m,宽40m,有两条纵向甬道和一条横向甬道,横向甬道的两侧有两个半圆环形甬道,半圆环形甬道的内半圆的半径为10m,横向甬道

如图,要设计一个矩形的花坛,花坛长60m,宽40m,有两条纵向甬道和一条横向甬道,横向甬道的两侧有两个半圆环形甬道,半圆环形甬道的内半圆的半径为10m,横向甬道

题型:江苏期末题难度:来源:
如图,要设计一个矩形的花坛,花坛长60m,宽40m,有两条纵向甬道和一条横向甬道,横向甬道的两侧有两个半圆环形甬道,半圆环形甬道的内半圆的半径为10m,横向甬道的宽度是其它各甬道宽度的2倍,设横向甬道的宽为2xm。(π的值取3)

(1)用含x的式子表示两个半圆环形甬道的面积之和;
(2)当所有甬道的面积之和比矩形面积的多36m2时,求x的值;
(3)根据设计的要求,x的值不能超过3 m.如果修建甬道的总费用(万元)与x(m)成正比例关系,比例系数是7.59,花坛其余部分的绿化费用为0.03万元/m2,那么x为何值时,所建花坛的总费用最少?最少费用是多少万元?
答案
解:(1)两个半圆环形甬道的面积=π(10+x)2-π×102=3x2+60x(m2);
(2)依题意,得40×x×2+60×2x-2x2×2+3x2+60x=×60×40+36,
整理,得x2-260x+516=0,
解得x1=2,x2=258(不符合题意,舍去)
∴x=2;
(3)设建设花坛的总费用为y万元,
则y=0.03×[60×40-(-x2+260x)]+7.59x=0.03x2-0.21x+72
∴当x=-=3.5时,y的值最小
因为根据设计的要求,x的值不能超过3,
∴当x=3时,总费用最少
最少费用为y=0.03×32-0.21×3=71.64(万元)。
举一反三
如图,已知抛物线y=-x2+bx+c与轴交于点A(-1,0)和B,与轴交于点C(0,3)。
(1)求此抛物线的解析式及点B的坐标;
(2)设抛物线的顶点为D,连结CD、DB、CB、AC;
①求证:△AOC∽△DCB;
②在坐标轴上是否存在与原点O不重合的点P,使以P、A、C为顶点的三角形与△DCB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由;
(3)设Q是抛物线上一点,连结QB、QC,把△QBC沿直线BC翻折得到△Q"BC,若四边形QBQ"C为菱形,求此时点Q的坐标。
题型:江苏期末题难度:| 查看答案
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元;市场调查发现,若每箱以45元的价格销售,平均每天销售105箱;每箱以50元的价格销售,平均每天销售90箱,假定每天销售量y(箱)与销售价x(元/箱)之间满足一次函数关系式。
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
题型:江苏期末题难度:| 查看答案
已知抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,8),若抛物线的对称轴为直线x=-1,且△ABC的面积为40。
(1)求这条抛物线的函数关系式;
(2)在直线BC上,是否存在这样的点Q,使得点Q到直线AC的距离为5?若存在,请求出符合条件的点Q的坐标;若不存在,请说明理由。
题型:江苏期末题难度:| 查看答案
已知二次函数y=x2
(1)怎样平移这个函数的图象,才能使它经过A(1,0)和B(2,-6)两点?写出平移后的新函数的解析式;
(2)求使新函数的图象位于x轴上方的实数x的取值范围。
题型:江苏期末题难度:| 查看答案
已知二次函数y=ax2+c的图象经过点(0,-1)、(1,),  
(1)求这个二次函数的解析式; 
(2)画出函数的图象。
题型:期中题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.