某县种植了一种无公害蔬菜,为了扩大生产规模,该县决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元,随着补贴数额的不断增大,生产规模也

某县种植了一种无公害蔬菜,为了扩大生产规模,该县决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元,随着补贴数额的不断增大,生产规模也

题型:重庆市期末题难度:来源:
某县种植了一种无公害蔬菜,为了扩大生产规模,该县决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元,随着补贴数额的不断增大,生产规模也不断增加,但每亩蔬菜的收益会相应降低,经调查,种植亩数y(亩)、每亩蔬菜的收益z(元)与补贴数额x(元)之间的关系如下表:
答案
举一反三
题型:重庆市期末题难度:| 查看答案
题型:期末题难度:| 查看答案
题型:期末题难度:| 查看答案
题型:期末题难度:| 查看答案
题型:期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

x(元)

0

100

200

300

y(亩)

800

1600

2400

3200

z(元)

3000

2700

2400

2100

解:(1)由表格知,y与x,z与x均成一次函数关系
,将(0,800)、(100,1600)代入:
解得:

,将(0,3000)、(100,2700)代入:
解得

(2)
∴当x=450时取得最大值7260000,y=8×450+800=4400
答:政府每亩补贴450元可获得最大总收益7260000元,此时种植4400亩。
(3)设修建了m亩蔬菜大棚,原来每亩的平均收益为7260000÷4400=1650元
由题意得方程:(1650+2000)m-650m-25m2=85000
解得
∵0<m≤70,
∴m≈46
答:修建了46亩蔬菜大棚。
如图,直线分别交x轴、y轴于B、A两点,抛物线L:y=ax2+bx+c的顶点G在x轴上,且过(0,4)和(4,4)两点。

(1)求抛物线L的解析式;
(2)抛物线L上是否存在这样的点C,使得四边形ABGC是以BG为底边的梯形,若存在,请求出C点的坐标,若不存在,请说明理由。
(3)将抛物线L沿轴平行移动得抛物线L1,其顶点为P,同时将△PAB沿直线AB翻折得到△DAB,使点D落在抛物线L1上,试问这样的抛物线L1是否存在,若存在,求出L1对应的函数关系式,若不存在,说明理由。
已知b>0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示,根据图象分析,a的值等于

[     ]

A.-2
B.-1
C.1
D.2
已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0)。
(1)填空:抛物线的对称轴为直线x=______,抛物线与x轴的另一个交点D的坐标为______;
(2)求该抛物线的解析式。
某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克。
(1)如果市场某天销售这种水果盈利了6000元,同时顾客又得到了实惠,那么每千克这种水果涨了多少元?
(2)设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元,若不考虑其它因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元?
已知:抛物线y=-x2-2(a-1)x-(a2-2a)与x轴交于点A(x1,0)、B(x2,0),且x1<1<x2
(1)求A、B两点的坐标(用a表示);
(2)设抛物线的顶点为C,求△ABC的面积;
(3)若a是整数,P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,求抛物线的解析式及线段PQ的长的取值范围。