如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A,B,C三点的抛物线的对称轴为直线l,D为对称轴l上一动点。(1)求抛物

如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A,B,C三点的抛物线的对称轴为直线l,D为对称轴l上一动点。(1)求抛物

题型:山东省中考真题难度:来源:
如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A,B,C三点的抛物线的对称轴为直线l,D为对称轴l上一动点。
(1)求抛物线的解析式;
(2)求当AD+ CD最小时点D的坐标;
(3)以点A为圆心,以AD为半径作OA。
①证明:当AD+CD最小时,直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:______。
答案
解:(1)设抛物线的解析式为y=a(x+1)(x-3),
将C(0,3)代入上式,
得3=a(0 +1)(0-3),
解得a=-1,
∴抛物线的解析式为y=-(x+1)(x-3),
即y=-x2+2x+3;(2)如图,连接BC,交直线l于点D,
∵点B与点A关于直线l对称,
∴AD=BD,
∴AD+CD=BD+CD=BC,
由“两点之间,线段最短”的原理可知:此时AD+CD最小,点D的位置即为所求,
设直线BC的解析式为y=kx+b,
由直线BC过点B(3,0),C(0,3),得
解这个方程组,得
∴直线BC的解析式为y=-x+3,
由(1)知:对称轴l为,即x=1,
将x=1代人y=-x+3,得y=-1+3=2,
∴点D的坐标为(1,2);
(3)①连接AD,设直线l与x轴的交点记为点E,
由(2)知:当AD+CD最小时,点D的坐标为(1,2),
∴DE=AE=BE=2,
∴∠DAB=∠DBA=45°,
∴∠ADB=90°,
∴AD⊥BD,
∴BD与⊙A相切;
②(1,-2)。
举一反三
在平面直角坐标系xOy中,已知抛物线y=a(x+1)2+c (a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M若直线MC的函数表达式为y=kx-3,与x轴的交点为N,且
(1)求此抛物线的函数表达式;
(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)过点A作x轴的垂线,交直线MC于点Q,若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
题型:四川省中考真题难度:| 查看答案
某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件,商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件。
(1)求商家降价前每星期的销售利润为多少元?
(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?
题型:山东省中考真题难度:| 查看答案
如图,在平面直角坐标系xOy中,等腰梯形OABC的下底边OA在x轴的正半轴上,BC∥OA,OC=AB,tan ∠BAO=,点B的坐标为(7,4)。
(1)求点A、C的坐标;
(2)求经过点O、B、C的抛物线的解析式;
(3)在第一象限内(2)中的抛物线上是否存在一点P,使得经过点P且与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分?若存在,请求出点P的横坐标;若不存在,请说明理由。
题型:四川省中考真题难度:| 查看答案
如图(1),在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上,点C、D同时从点O出发,点C以1个单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动,设运动时间为t秒,0<t<5。
(1)当时,求证:DC⊥OA;
(2)若△OCD的面积为S,求S与f的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以D、C、E、D为顶点的四边形是梯形,求点E的坐标。

题型:湖北省中考真题难度:| 查看答案
一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC。
(1)若m为常数,求抛物线的解析式;
(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?
(3)设抛物线交y轴正半轴于D点,是否存在实数m,使得△BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由。
题型:湖北省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.