已知抛物线y=x2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B。(1)求m的值;(2)过A作x轴的平行线,交抛物线于点C,求证:△A

已知抛物线y=x2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B。(1)求m的值;(2)过A作x轴的平行线,交抛物线于点C,求证:△A

题型:四川省中考真题难度:来源:
已知抛物线y=x2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B。
(1)求m的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线C′,且与x轴的左半轴交于E点,与y轴交于F点,如图,请在抛物线C′上求点P,使得△EFP是以EF为直角边的直角三角形。
答案
解:(1)∵抛物线y=x2-2x+m-1与x轴只有一个交点,
∴△=(-2)2-4×1×(m-1)=0,
解得,m=2;
(2)由(1)知抛物线的解析式为y=x2-2x+1,易得顶点B(1,0),
当x=0时,y=1,得A(0,1),
由1=x2-2x+1,解得,x=0(舍)或x=2,所以C点坐标为:(2,1),
过C作x轴的垂线,垂足为D,则CD=1,BD=xD-xB=1,
∴在Rt△CDB中,∠CBD=45°,BC=
同理,在Rt△AOB中,AO=OB=1,
于是∠ABO=45°,AB=
∴∠ABC=180°-∠CBD-∠ABO=90°,AB=BC,
因此△ABC是等腰直角三角形;
 (3)由题知,抛物线C′的解析式为y=x2-2x-3,
当x=0时,y=-3;
当y=0时,x=-1或x=3,
∴E(-1,0),F(0,-3),
即OE=1,OF=3,
①若以E点为直角顶点,设此时满足条件的点为P1(x1,y1),作P1M⊥x轴于M,
∵∠P1EM+∠OEF=∠EFO+∠OEF=90°,
∴∠P1EM=∠EFO,
得Rt△EFO∽Rt△P1EM,

即EM=3P1M,
∵EM=x1+1,P1M=y1
∴x1+1=3y1,(*)
由于P1(x1,y1)在抛物线C′上,
则有3(x12-2x1-3)=x1+1,
整理得,3x12-7x1-10=0,
解得,x1=-1(舍)或 x1=
把x1=代入(*)中可解得,
∴P1),
②若以F点为直角顶点,设此时满足条件的点为P2(x2,y2),作P2N⊥与y轴于N,
同第一种情况,易知Rt△EFO∽Rt△FP2N,

即P2N=3FN,
∵P2N=x2,FN=3+y2
∴x2=3(3+y2)(**)
由于P2(x2,y2)在抛物线C′上,
则有x2=3(3+x22-2x2-3),
整理得3x22-7x2=0,
解得x2=0(舍)或
代入(**)中可解得,
∴P2),
综上所述,满足条件的P点的坐标为:()或()。
举一反三
抛物线y=ax2+bx+c与x轴的交点为A(m-4,0)和B(m,0),与直线y=-x+p相交于点A和点C(2m-4,m-6)。
(1)求抛物线的解析式;
(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q的坐标;
(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当⊿PQM的面积最大时,请求出⊿PQM的最大面积及点M的坐标。
题型:四川省中考真题难度:| 查看答案
如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m。

(1)求a,c的值;
(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;
(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围。(不必写过程)
题型:福建省中考真题难度:| 查看答案
已知抛物线y=-x2+2mx-m2+2的顶点A在第一象限,过点A作AB⊥y轴于点B,C是线段AB上一点(不与点A、B重合),过点C作CD⊥x轴于点D并交抛物线于点P。
(1)若点C(1,a)是线段AB的中点,求点P的坐标;
(2)若直线AP交y轴的正半轴于点E,且AC=CP,求△OEP的面积S的取值范围。
题型:福建省中考真题难度:| 查看答案
如图,已知二次函数y=ax2+bx+c的图像经过A(-1,-1)、B(0,2)、C(1,3)。
(1)求二次函数的解析式;
(2)画出二次函数的图像。
题型:广东省中考真题难度:| 查看答案
在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止。
(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式;
(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由。
题型:甘肃省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.