如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线。(1)求点C的

如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线。(1)求点C的

题型:黑龙江省月考题难度:来源:
如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线。

(1)求点C的坐标及抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,求点D的坐标;并直接写出直线BC、直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由。
答案

解:(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,
∴由条件可得RtΔAOC∽ RtΔCOB,
,由A、B坐标∴,解得OC=3(负值舍去),∴C(0,-3)
设抛物线解析式为y=a(x+1)(x-9),
∴-3=a(0+1)(0-9),解得a=
∴二次函数的解析式为y=(x+1)(x-9),即y=x2-x-3;
(2) ∵AB为O′的直径,且A(-1,0),B(9,0),
∴OO′=4,O′(4,0),
∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,
∴∠BCD=45°,连结O′D,则∠BO′D=90°(同弦BD所对的圆心角)
∴D (4,-5),
直线BC解析式为y=x-3 、直线BD解析式为y=x-9
(3)①当DP1∥CB时,能使∠PDB=∠CBD,
又∵DP1∥CB,
∴设直线DP1的解析式为y=x+n,
把D(4,-5)代入可求n=-
∴直线DP1解析式为y=x-
DP1与抛物线的交点满足x-=x2-x-3
∴点P1坐标为
②当CQ∥BD时,求得圆上点Q(7,4),直线DQ与抛物线交于点P2 (14,25)。
(答案不唯一)

举一反三
如图,在直角坐标系中,⊙A的半径为4,A的坐标为(2,0), ⊙A与x轴交于E、F两点,与y轴交于C、D两点,过C点作⊙A的切线BC交x轴于B。
(1)求直线BC的解析式;
(2)若一抛物线与x轴的交点恰为⊙A与x轴的两个交点,且抛物线的顶点在直线上y=x+2上,求此抛物线的解析式;
(3)试判断点C是否在抛物线上,并说明理由。
题型:福建省月考题难度:| 查看答案
已知:关于x的一元二次方程x2+(n-2m)x+m2-mn=0①。
(1)求证:方程①有两个实数根;
(2)若m-n-1=0,求证方程①有一个实数根为1。
(3)在(2)的条件下,设方程①的另一个根为a,当x=2时,关于m 的函数y1=nx+am与y2=x2+a(n-2m)x+m2-mn的图象交于点A、B(点A在点B的左侧),平行于y轴的直线l与y1、 y2的图象分别交于点C、D,当l沿AB由点A平移到点B时,求这个过程中线段CD的最大值。
题型:模拟题难度:| 查看答案
如图所示,正方形ABCD的边长为4,E为CD 的中点,F为AD边上一点,且不与点D重合,AF=a。
(1)判断四边形BCEF的面积是否存在最大或最小值,若存在,求出最大或最小值;若不存在,请说明理由;
(2)若∠BFE=∠FBC,求tan∠AFB的值;
(3)在(2)的条件下,若将“E为CD的中点”改为“CE=k·DE”,其中k为正整数,其他条件不变,请直接写出tan∠AFB的值。(用k的代数式表示)
题型:模拟题难度:| 查看答案
一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC。
(1)若m为常数,求抛物线的解析式;
(2)若m为小于0的常数,那么(1)中的抛物线经过怎样的平移可以使顶点在坐标原点?
(3)设抛物线交y轴正半轴于D点,问:是否存在实数m,使得△BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由。
题型:模拟题难度:| 查看答案
如图所示,抛物线y=ax2+bx+c的顶点为A(0,1),与x轴的一个交点B的坐标为(2,0),点P在抛物线上,它的横坐标为2n(0<n<l),作PC⊥x 轴于C,PC交射线AB于点D。
(1)求抛物线的解析式;
(2)用含n的代数式表示CD、PD的长,并通过计算说明的大小关系;
(3)若将原题中“0<n<1”的条件改为“n>1”,其他条件不变,请通过计算说明(2)中的结论是否仍然成立。 
题型:模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.