图1是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有

图1是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有

题型:专项题难度:来源:
图1是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯。若把拱桥的截面图放在平面直角坐标系中(如图2)。
(1)求抛物线表达式;
(2)求两盏景观灯之间的水平距离。
答案
解:(1)由题意可得抛物线的顶点坐标为(5,5),与轴的交点坐标是(0,1),
设抛物线所对应的二次函数表达式是
把(0,1)代入,得
所以
(2)由已知得两景观灯的纵坐标都是4,
所以

解得:
所以两景观灯间的距离为(m)。
举一反三
已知二次函数的图象开口向上,且顶点在y轴的负半轴,请你写出一个满足条件的二次函数关系式(     )
题型:专项题难度:| 查看答案
已知y=2x2的图象是抛物线,若抛物线不动,把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线所对应的函数关系式是[     ]
A .y=2(x-2)2 +2
B.y=2(x+2)2 -2   
C.y=2(x-2)2 -2
D.y=2(x+2)2 +2
题型:专项题难度:| 查看答案
在平面直角坐标系中给定以下五个点:
(1)请从五点中任选三点,求一条以平行于轴的直线为对称轴的抛物线的解析式;
(2)求该抛物线的顶点坐标和对称轴,并画出草图;
(3)已知点F在抛物线的对称轴上,直线过点且垂直于对称轴。验证:以E(1,0)为圆心,EF为半径的圆与直线相切。请你进一步验证,以抛物线上的点为圆心DF为半径的圆也与直线相切。由此你能猜想到怎样的结论。
题型:同步题难度:| 查看答案
一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。  
(1)建立如图所示的直角坐标系,求抛物线的解析式;  
(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?
题型:专项题难度:| 查看答案
某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.   (1)试求y与x之间的关系式;   
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?
题型:专项题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.