如图,二次函数y=ax2+bx+c的图象经过A(-1,0)、B(2,3) 两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值。

如图,二次函数y=ax2+bx+c的图象经过A(-1,0)、B(2,3) 两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值。

题型:吉林省期末题难度:来源:
如图,二次函数y=ax2+bx+c的图象经过A(-1,0)、B(2,3) 两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值。
答案
;对称轴x=1;最大值为4。
举一反三
我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销。经过调查,得到如下数据: (1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少? (利润=销售总价-成本总价);
题型:北京期末题难度:| 查看答案
已知抛物线过点(-2,4),与y轴的交点为B(0,1)。
(1)求抛物线的解析式及其顶点A的坐标;
(2)在抛物线上是否存在一点C,使∠BAC=90?若不存在说明理由;若存在,求出点C的坐标;
(3)P、Q为抛物线上的两点,且横坐标分别为4和6,在x轴、y轴上分别有两个动点M、N,当PM +MN +NQ最小时,求出M、N两点的坐标。
题型:重庆市期末题难度:| 查看答案
二次函数的部分对应值如下表:
(1)二次函数图象所对应的顶点坐标为(      );
(2)当x=4时,y=(      );
(3)由二次函数的图象可知,当函数值y<0时,x的取值范围是(       )。
题型:北京期末题难度:| 查看答案
如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S。
题型:北京期末题难度:| 查看答案
如图,抛物线交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1。
(1) 求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线 PC的位置关系,并说明理由。
        (参考数:)
题型:北京期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.