如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ. DQ,过P作PE∥DQ交AQ于E,作

如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ. DQ,过P作PE∥DQ交AQ于E,作

题型:期末题难度:来源:
如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ. DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F。
(1)求证:△APE∽△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?
(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)
答案
解:(1)证明∠APE=∠ADQ,∠AEP=∠AQD(过程“略”)
(2)注意到△APE∽△ADQ与△PDE∽△ADQ,及S△PEF=
得S△PEF==
∴当,即P是AD的中点时,S△PEF取得最大值
(3)作A关于直线BC的对称点A",连DA"交BC于Q,则这个点Q就是使△ADQ周长最小的点,此时Q是BC的中点
举一反三
如图抛物线的解析式是
[     ]
A.y= x2-x+2
B.y=-x2-x+2
C.y= x2+x+2
D.y=-x2+x+2
题型:安徽省期中题难度:| 查看答案
已知抛物线y=ax2+bx+c经过(-1,10),(1,4),(2,7)三点,求这个函数的解析式。
题型:安徽省期中题难度:| 查看答案
如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米。以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系,求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;
(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
题型:甘肃省期中题难度:| 查看答案
某工厂准备加工一批形状如下图所示的矩形窗子,其窗框用铝合金材料做成,窗框的内部安装透明玻璃,每个窗框的周长均为5米,设一边长为x米,做成的窗框的透光面积为y米2
(1)请写出y与x的函数关系式,并写出自变量x的取值范围; 
(2)根据(1)中的函数关系式分别计算:①当x=1时,窗框的透光面积是多少?②当x为何值时,窗框的透光面积最大?最大面积是多少? 
(3)现该工厂准备按(2)中的两种不同透光面积加工矩形窗子共计60个(其中透光面积最大的窗子不少于48个)。已知铝合金每米的材料费为25元,玻璃每平方米的材料费为32元,现计划用不多于10480元的资金购买材料来加工矩形窗子,那么共有哪几种加工窗子的方案?
题型:福建省模拟题难度:| 查看答案
如图,正方形ABCD的边长为4cm,直角三角尺的一条直角边始终经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一条直角边与BC相交于点Q。设AE的长为xcm,BQ的长为ycm。    
(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;    
(2)E点滑动到何处,BQ最长?最长是多少?    
(3)在(2)的情况下,猜想:以DO为直径的⊙O与AB的位置关系,并说明你的猜想。
题型:福建省模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.