已知二次函数y=x2+ax+a-2.(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.(2)设a<0,当此函数图象与x轴的两个交点的距离为13时,求出此

已知二次函数y=x2+ax+a-2.(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.(2)设a<0,当此函数图象与x轴的两个交点的距离为13时,求出此

题型:不详难度:来源:
已知二次函数y=x2+ax+a-2.
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.
(2)设a<0,当此函数图象与x轴的两个交点的距离为


13
时,求出此二次函数的解析式.
答案
(1)∵△=a2-4(a-2)=(a-2)2+4>0,
∴不论a为何实数,此函数图象与x轴总有两个交点.

(2)根据两点间距离公式:


a2-4(a-2)
|a|
=


13

解得a=-1或a=
2
3
(不符合题意,舍去).
所以函数解析式为:y=x2-x-3.
举一反三
如图所示,函数y=(k-2)x2-


7
x+(k-5)的图象与x轴只有一个交点,则交点的横坐标x0=______.
题型:不详难度:| 查看答案
二次函数y=x2-8x+15的图象与x轴相交于A、B两点,点C在该函数的图象上移动,能使△ABC的面积等于1的点C共有(  )
A.1个B.2个C.3个D.4个
题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(-2,0)和点B,与y轴相交于点C(0,4),且S△ABC=12,则该抛物线的对称轴是直线(  )
A.x=
1
2
B.x=1C.x=
3
2
D.x=2

题型:不详难度:| 查看答案
利用图象解一元二次方程x2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x2和直线y=-x+3,两图象交点的横坐标就是该方程的解.
(1)填空:利用图象解一元二次方程x2+x-3=0,也可以这样求解:在平面直角坐标系中画出抛物线y=______和直线y=-x,其交点的横坐标就是该方程的解.
(2)已知函数y=-
6
x
的图象(如图所示),利用图象求方程
6
x
-x+3=0的近似解.(结果保留两个有效数字)
题型:不详难度:| 查看答案
(a011•玉溪)如图,函数y=-xa+bx+cx部分图象与x轴、y轴x交点分别为A(1,0),B(0,3),对称轴是x=-1,在下列结论中,错误x是(  )
A.顶点坐标为(-1,4)
B.函数的解析式为y=-x2-2x+3
C.当x<0时,y随x的增大而增大
D.抛物线与x轴的另一个交点是(-3,0)

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.