连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°, ∵AB∥CD, ∴∠BAC+∠ACD=180°, ∴∠CAE+4x°+∠ACE+4y°=180°, ∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°) ∴∠AEC=180°-(∠CAE+∠ACE) =180°-[180°-(4x°+4y°)] =4x°+4y° =4(x°+y°), ∠AFC=180°-(∠FAC+∠FCA) =180°-[180°-(3x°+3y°)] =3x°+3y° =3(x°+y°), ∴∠AFC=∠AEC, 故选C.
|