(1)证明:∵点I是△ABC的内心 ∴∠BAD=∠CAD,∠ABI=∠CBI ∵∠CBD=∠CAD ∴∠BAD=∠CBD ∴∠BID=∠ABI+∠BAD,∠BAD=∠CAD=∠CBD, ∵∠IBD=∠CBI+∠CBD, ∴∠BID=∠IBD ∴ID=BD;
(2)连接OA、OD、BD和BI, ∵OA=OD,OI⊥AD ∴AI=ID, ∵I为△ABC内心, ∴∠BAD=∠BCD, ∴弧BD=弧CD, ∵弧CD=弧CD, ∴∠BCD=∠BAD, ∴∠DBI=∠BCD+∠CBI=∠CAD+∠CBI, =(∠BAC+∠ACB), ∵∠DIB=∠DAB+∠ABI=(∠BAC+∠ABC), ∴∠DIB=∠DBI, ∴BD=ID=AI, | BD | = | DC | , 故OD⊥BC,记垂足为E,则有BE=BC, 作IG⊥AB于G,又∠DBE=∠IAG,而BD=AI, ∴Rt△BDE≌Rt△AIG, 于是,AG=BE=BC,但AG=(AB+AC-BC), 故AB+AC=2BC, ∴=2. |