如图,AB是半圆O的直径,C是半圆上一个动点,AD、BD分别平分∠BAC和∠ABC,延长AD分别与BC、半圆O交于点F、E,连接BE、CE.(1)证明:△ABE
题型:来宾难度:来源:
如图,AB是半圆O的直径,C是半圆上一个动点,AD、BD分别平分∠BAC和∠ABC,延长
AD分别与BC、半圆O交于点F、E,连接BE、CE. (1)证明:△ABE∽△BFE; (2)证明:△BDE是等腰直角三角形; (3)如果四边形ABEC是梯形,试求∠ABC的大小. |
答案
(1)证明:∵AD平分∠BAC, ∴∠CAE=∠BAE.(1分) 又∵∠CAE=∠CBE(同弧所对的圆周角相等), ∴∠CBE=∠BAE.(2分) 又∵∠AEB=∠BEF, ∴△ABE∽△BFE.
(2)证明:∵AB是半圆O的直径, ∴∠DEB=90°.(4分) 又∵AD平分∠BAC,BD平分∠ABC, ∴∠CAE=∠BAE,∠ABD=∠FBD. 又∵∠EDB=∠BAE+∠ABD, ∠EBD=∠CBE+∠FBD ∠CAE=∠CBE(同弧所对的圆周角相等), ∴∠EDB=∠EBD.(5分) ∴△BDE是等腰直角三角形.
(3)∵四边形ABEC是梯形, ∴CE∥AB. ∴∠CEA=∠BAE. 又∵AD平分∠BAC, ∴∠CAE=∠BAE. 又∵∠CEA=∠ABC(同弧所对的圆周角相等), ∴∠CAE=∠BAE=∠ABC. 又∵∠ACB=90°, ∴∠ABC+∠CAE+∠BAE=90°(即3∠ABC=90°). ∴∠ABC=30°. |
举一反三
如图,已知平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF交于H,BF,AD的延长线交于G,给出下列结论:①DB=BE;②∠A=∠BHE;③AB=BH,其中正确的结论个数有( ) |
如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则( )A.∠1>∠2 | B.∠1=∠2 | C.∠1<∠2 | D.∠1与∠2大小关系不能确定 |
|
若等腰△ABC的腰长AB=2,顶角∠BAC=120°,以BC为边的正方形面积为( ) |
如图,是屋架设计图的一部分,其中BC⊥AC,DE⊥AC,点D是AB的中点,∠A=30°,AB=7m,则BC=______m,DE=______m. |
已知:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长. |
最新试题
热门考点